Skip to main content
Erschienen in: Electrical Engineering 3/2021

03.01.2021 | Original Paper

Increasing the transmission performance of a conventional 110 kV cable line by combining a hydronic concrete pavement system with photovoltaic floor tiles

verfasst von: Dardan Klimenta, Miroljub Jevtić, Darius Andriukaitis, Vladica Mijailović

Erschienen in: Electrical Engineering | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By combining the photovoltaic (PV) effect, heat exchanger principle, heat storage capability and phenomena of heat generation in PV cells and power cables, it is possible to increase significantly the transmission performance (i.e. the ampacity) of any 110 kV underground cable line. This can be achieved by installing power cables in a trench which is completely filled with high thermal conductivity bedding and which is covered with a hydronic concrete pavement (HCP) and a layer of PV floor tiles. This HCP, a heat storage system and a circulating pump are the three main parts of a HCP system, which should be used as a cooler for the PV tiles and cables. In particular, the PV cells would generate waste heat and direct current electricity from sunlight (using the PV effect), the cable bedding would conduct waste heat well from the cables to the heat collecting pipes of the HCP system (by improved heat conduction), while the HCP system would collect and store waste heat from the PV cells and cables as well as some heat from the Sun (using the heat exchanger principle and heat storage capability). The main aims of this paper are to show that the proposed method is highly energy-efficient, cost-effective and applicable in practice. The proposed method is regarded as a novelty, while the electricity generation in the PV floor tiles and the storage of heat within the HCP system represent additional advantages of this method. An adequate experimental background, one reference FEM-based model and one necessary base case are provided. For specified environmental conditions, the proposed method is verified numerically by means of COMSOL Multiphysics. Finally, the results of a techno-economic analysis are presented and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Efthymiou C, Santamouris M, Kolokotsa D, Koras A (2016) Development and testing of photovoltaic pavement for heat island mitigation. Sol Energy 130:148–160CrossRef Efthymiou C, Santamouris M, Kolokotsa D, Koras A (2016) Development and testing of photovoltaic pavement for heat island mitigation. Sol Energy 130:148–160CrossRef
2.
Zurück zum Zitat Bopshetty SV, Nayak JK, Sukhatme SP (1992) Performance analysis of a solar concrete collector. Energy Convers Manag 33(11):1007–1016CrossRef Bopshetty SV, Nayak JK, Sukhatme SP (1992) Performance analysis of a solar concrete collector. Energy Convers Manag 33(11):1007–1016CrossRef
3.
Zurück zum Zitat Mallick RB, Chen B-L, Bhowmick S (2012) Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment. Int J Sustain Eng 5(2):159–169CrossRef Mallick RB, Chen B-L, Bhowmick S (2012) Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment. Int J Sustain Eng 5(2):159–169CrossRef
4.
Zurück zum Zitat Klimenta D, Jevtić M, Andriukaitis D (2020) An alternative method of increasing the ampacity of a 110 kV underground cable line using photovoltaic floor tiles and a hydronic concrete pavement system. In: Presented at the 3rd international conference on electronics and electrical engineering (ICEEE-2020), Montreal, Canada, July 29–30, 2020 Klimenta D, Jevtić M, Andriukaitis D (2020) An alternative method of increasing the ampacity of a 110 kV underground cable line using photovoltaic floor tiles and a hydronic concrete pavement system. In: Presented at the 3rd international conference on electronics and electrical engineering (ICEEE-2020), Montreal, Canada, July 29–30, 2020
5.
Zurück zum Zitat Klimenta D, Jevtić M, Klimenta J, Perović B (2018) A review on new methods for increasing the ampacity of underground power cables: cool and photovoltaic pavements. In: Proceedings of the 6th international conference on renewable electrical power sources (6th ICREPS), pp 15–21 Klimenta D, Jevtić M, Klimenta J, Perović B (2018) A review on new methods for increasing the ampacity of underground power cables: cool and photovoltaic pavements. In: Proceedings of the 6th international conference on renewable electrical power sources (6th ICREPS), pp 15–21
6.
Zurück zum Zitat Klimenta D, Jevtić M, Klimenta J, Perović B (2018) Increasing the ampacity of underground power cables by an application of photovoltaic pavements. In: Proceedings of the 6th international conference on renewable electrical power sources (6th ICREPS), pp 105–114 Klimenta D, Jevtić M, Klimenta J, Perović B (2018) Increasing the ampacity of underground power cables by an application of photovoltaic pavements. In: Proceedings of the 6th international conference on renewable electrical power sources (6th ICREPS), pp 105–114
7.
Zurück zum Zitat Klimenta D, Tasić D, Jevtić M (2020) The use of hydronic asphalt pavements as an alternative method of eliminating hot spots of underground power cables. Appl Therm Eng 168:114818CrossRef Klimenta D, Tasić D, Jevtić M (2020) The use of hydronic asphalt pavements as an alternative method of eliminating hot spots of underground power cables. Appl Therm Eng 168:114818CrossRef
8.
Zurück zum Zitat Lee B, Liu JZ, Sun B, Shen CY, Dai GC (2008) Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polym Lett 2(5):357–363CrossRef Lee B, Liu JZ, Sun B, Shen CY, Dai GC (2008) Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polym Lett 2(5):357–363CrossRef
9.
Zurück zum Zitat Allan J, Pinder H, Dehouche Z (2016) Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector. AIP Adv 6(035011):1–9 Allan J, Pinder H, Dehouche Z (2016) Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector. AIP Adv 6(035011):1–9
10.
Zurück zum Zitat Klimenta D, Tasić D, Jevtić M (2019) Increasing the ampacity of a 110 kV underground cable line by an application of a hydronic asphalt pavement system. In: Proceedings of the 14th international conference on applied electromagnetics (ПEC 2019), pp 1–4 Klimenta D, Tasić D, Jevtić M (2019) Increasing the ampacity of a 110 kV underground cable line by an application of a hydronic asphalt pavement system. In: Proceedings of the 14th international conference on applied electromagnetics (ПEC 2019), pp 1–4
11.
Zurück zum Zitat Klimenta D, Tasić D, Jevtić M (2019) An alternative method of increasing the transmission performance of a conventional 110 kV cable line. J Energy Technol 12(3):19–29 Klimenta D, Tasić D, Jevtić M (2019) An alternative method of increasing the transmission performance of a conventional 110 kV cable line. J Energy Technol 12(3):19–29
12.
Zurück zum Zitat Mallick RB, Chen B-L, Bhowmick S, Hulen MS (2008) Capturing solar energy from asphalt pavements. In: Presented at the international ISAP symposium on asphalt pavements and environment (ISAP 2008), Zurich, Switzerland, August 18–20, 2008 Mallick RB, Chen B-L, Bhowmick S, Hulen MS (2008) Capturing solar energy from asphalt pavements. In: Presented at the international ISAP symposium on asphalt pavements and environment (ISAP 2008), Zurich, Switzerland, August 18–20, 2008
13.
Zurück zum Zitat Klimenta D, Nikolajević S, Sredojević M (2007) Controlling the thermal environment in hot spots of buried power cables. Eur Trans Electr Power 17(5):427–449CrossRef Klimenta D, Nikolajević S, Sredojević M (2007) Controlling the thermal environment in hot spots of buried power cables. Eur Trans Electr Power 17(5):427–449CrossRef
14.
Zurück zum Zitat COMSOL (2012) Heat transfer module user’s guide. Version 4:3 COMSOL (2012) Heat transfer module user’s guide. Version 4:3
15.
Zurück zum Zitat Ma T, Yang H, Gu W, Li Z, Yan S (2019) Development of walkable photovoltaic floor tiles used for pavement. Energy Convers Manag 183:764–771CrossRef Ma T, Yang H, Gu W, Li Z, Yan S (2019) Development of walkable photovoltaic floor tiles used for pavement. Energy Convers Manag 183:764–771CrossRef
16.
Zurück zum Zitat Ma T, Yang H, Lu L (2017) Development of solar photovoltaic pavement panels for application on the green deck. In: Presented at the world sustainable built environment conference 2017 Hong Kong (WSBE17 Hong Kong), Construction Industry Council (CIC) and Hong Kong Green Building Council (HKGBC), Hong Kong SAR, June 5–7, 2017 Ma T, Yang H, Lu L (2017) Development of solar photovoltaic pavement panels for application on the green deck. In: Presented at the world sustainable built environment conference 2017 Hong Kong (WSBE17 Hong Kong), Construction Industry Council (CIC) and Hong Kong Green Building Council (HKGBC), Hong Kong SAR, June 5–7, 2017
17.
Zurück zum Zitat Yang H, Ma T (2016) Research and development of solar PV pavement panels for application on the green deck, Final Report. The Hong Kong Polytechnic University, Hong Kong SAR Yang H, Ma T (2016) Research and development of solar PV pavement panels for application on the green deck, Final Report. The Hong Kong Polytechnic University, Hong Kong SAR
18.
Zurück zum Zitat Zhou Z, Wang X, Zhang X, Chen G, Zuo J, Pullen S (2015) Effectiveness of pavement-solar energy system—an experimental study. Appl Energy 138:1–10CrossRef Zhou Z, Wang X, Zhang X, Chen G, Zuo J, Pullen S (2015) Effectiveness of pavement-solar energy system—an experimental study. Appl Energy 138:1–10CrossRef
19.
Zurück zum Zitat Klimenta D, Perović B, Klimenta J, Jevtić M, Milovanović M, Krstić I (2018) Controlling the thermal environment of underground cable lines using the pavement surface radiation properties. IET Gener Transm Distrib 12(12):2968–2976CrossRef Klimenta D, Perović B, Klimenta J, Jevtić M, Milovanović M, Krstić I (2018) Controlling the thermal environment of underground cable lines using the pavement surface radiation properties. IET Gener Transm Distrib 12(12):2968–2976CrossRef
20.
Zurück zum Zitat IEC (2015) IEC Standard Electric Cables—Calculation of the Current Rating—Part 2–1: thermal resistance—calculation of the thermal resistance. 2.0 edition. IEC 60287-2-1:2015 IEC (2015) IEC Standard Electric Cables—Calculation of the Current Rating—Part 2–1: thermal resistance—calculation of the thermal resistance. 2.0 edition. IEC 60287-2-1:2015
21.
Zurück zum Zitat IEC (2003) IEC technical report electric cables—calculations for current ratings—finite element method. 1st edition. IEC TR 62095:2003 IEC (2003) IEC technical report electric cables—calculations for current ratings—finite element method. 1st edition. IEC TR 62095:2003
22.
Zurück zum Zitat King SY, Halfter NA (1982) Underground power cables, 1st edn. Longman, London and New York King SY, Halfter NA (1982) Underground power cables, 1st edn. Longman, London and New York
23.
Zurück zum Zitat IEC (2017) IEC Standard electric cables—calculation of the current rating—part 3–1: operating conditions—site reference conditions. 2.0 edition. IEC 60287-3-1:2017 IEC (2017) IEC Standard electric cables—calculation of the current rating—part 3–1: operating conditions—site reference conditions. 2.0 edition. IEC 60287-3-1:2017
24.
Zurück zum Zitat Gouda OE, El Dein AZ, Amer GM (2011) Effect of the formation of the dry zone around underground power cables on their ratings. IEEE Trans Power Deliv 26(2):972–978CrossRef Gouda OE, El Dein AZ, Amer GM (2011) Effect of the formation of the dry zone around underground power cables on their ratings. IEEE Trans Power Deliv 26(2):972–978CrossRef
25.
Zurück zum Zitat IEC (2014) IEC standard electric cables—calculation of the current rating—Part 1–1: current rating equations (100% load factor) and calculation of losses—general. 2.1 edition. IEC 60287-1-1:2006+AMD1:2014 CSV IEC (2014) IEC standard electric cables—calculation of the current rating—Part 1–1: current rating equations (100% load factor) and calculation of losses—general. 2.1 edition. IEC 60287-1-1:2006+AMD1:2014 CSV
26.
Zurück zum Zitat Heinhold L (1990) Power cables and their application-Part 1, 3rd edn. Siemens Aktiengesellschaft, Berlin Heinhold L (1990) Power cables and their application-Part 1, 3rd edn. Siemens Aktiengesellschaft, Berlin
27.
Zurück zum Zitat Klimenta DO, Perović BD, Klimenta JL, Jevtić MM, Milovanović MJ, Krstić ID (2018) Controlling the thermal environment of underground power cables adjacent to heating pipeline using the pavement surface radiation properties. Therm Sci 22(6):2625–2640CrossRef Klimenta DO, Perović BD, Klimenta JL, Jevtić MM, Milovanović MJ, Krstić ID (2018) Controlling the thermal environment of underground power cables adjacent to heating pipeline using the pavement surface radiation properties. Therm Sci 22(6):2625–2640CrossRef
28.
Zurück zum Zitat Ciriminna R, Meneguzzo F, Albanese L, Pagliaro M (2015) Guidelines for integrating solar energy in Sicily’s buildings. Green 5(1–6):73–82 Ciriminna R, Meneguzzo F, Albanese L, Pagliaro M (2015) Guidelines for integrating solar energy in Sicily’s buildings. Green 5(1–6):73–82
29.
Zurück zum Zitat Klimenta D, Tasić D, Perović B, Klimenta J, Milovanović M, Anđelković L (2019) Eliminating the effect of hot spots on underground power cables using cool pavements. Electr Eng 101(4):1295–1309CrossRef Klimenta D, Tasić D, Perović B, Klimenta J, Milovanović M, Anđelković L (2019) Eliminating the effect of hot spots on underground power cables using cool pavements. Electr Eng 101(4):1295–1309CrossRef
Metadaten
Titel
Increasing the transmission performance of a conventional 110 kV cable line by combining a hydronic concrete pavement system with photovoltaic floor tiles
verfasst von
Dardan Klimenta
Miroljub Jevtić
Darius Andriukaitis
Vladica Mijailović
Publikationsdatum
03.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 3/2021
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01167-4

Weitere Artikel der Ausgabe 3/2021

Electrical Engineering 3/2021 Zur Ausgabe