Skip to main content
Erschienen in: Polymer Bulletin 6/2012

01.04.2012 | Original Paper

Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes

verfasst von: Maryam Amirian, Ali Nabipour Chakoli, Jie He Sui, Wei Cai

Erschienen in: Polymer Bulletin | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The poly(l-lactide) (PLLA) biocompatible and biodegradable polymer was reinforced with functionalized Multiwalled carbon nanotubes (MWCNTs) to overcome on insufficient mechanical properties of this polymer for high load bearing applications. To fully realize the potential of MWCNTs for this purpose, they have to be homogeneously dispersed in polymer matrix and have efficient load transfer across the MWCNTs/polymer interface. The pristine MWCNTs (pMWCNTs) were functionalized, at first, by Friedel–Crafts acylation, which introduced the aromatic amine groups on the sidewall of MWCNTs (MWCNT–NH2) without shortening or cutting of pMWCNTs. And then, the PLLA chains covalently grafted from the sidewall of MWCNT–NH2 by in situ ring-opening polymerization of l-lactide oligomers using stannous octanoate as the initiating system. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy spectra revealed that the PLLA chains grafted form the sidewall of MWCNTs strongly. The surface morphology of pristine and PLLA-grafted MWCNTs (MWCNT-g-PLLAs) was characterized by scanning electron microscopy and transmission electron microscopy. The tensile test of prepared composites of PLLA with various concentrations of MWCNT-g-PLLAs show a significant increment in tensile strength and elongation at failure of composites with increasing the concentration of MWCNT-g-PLLAs in composites. Also, it is found that the MWCNT-g-PLLAs increased the photoluminescence effect of PLLA and widened the luminescence region of PLLA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ratna D, Karger-Kocsis JJ (2008) Recent advances in shape memory polymers and composites: a review. Mater Sci 43:254–269CrossRef Ratna D, Karger-Kocsis JJ (2008) Recent advances in shape memory polymers and composites: a review. Mater Sci 43:254–269CrossRef
2.
Zurück zum Zitat Pohjonen T, Helevirta P, Tormälä P, Koskikare K, Patiälä H, Rokkanen P (1997) Strength retention of self-reinforced poly-l-lactide screws. A comparison of compression moulded and machine cut screws. J Mater Sci Mater Med 8:311–320CrossRef Pohjonen T, Helevirta P, Tormälä P, Koskikare K, Patiälä H, Rokkanen P (1997) Strength retention of self-reinforced poly-l-lactide screws. A comparison of compression moulded and machine cut screws. J Mater Sci Mater Med 8:311–320CrossRef
3.
Zurück zum Zitat Loh XJ, Colin Sng KB, Li J (2008) Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone). Biomaterials 29:3185–3194CrossRef Loh XJ, Colin Sng KB, Li J (2008) Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone). Biomaterials 29:3185–3194CrossRef
4.
Zurück zum Zitat Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH (2004) In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-e-caprolactone) scaffolds. Biomaterials 25:5939–5946CrossRef Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH (2004) In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-e-caprolactone) scaffolds. Biomaterials 25:5939–5946CrossRef
5.
Zurück zum Zitat Lu XL, Cai W, Gao ZY, Tagn WJ (2007) Shape memory effects of poly(l-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull 58:381–391CrossRef Lu XL, Cai W, Gao ZY, Tagn WJ (2007) Shape memory effects of poly(l-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull 58:381–391CrossRef
6.
Zurück zum Zitat Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharmaceutics 282:1–18CrossRef Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharmaceutics 282:1–18CrossRef
7.
Zurück zum Zitat Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773–780CrossRef Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773–780CrossRef
8.
Zurück zum Zitat Xua Z, Hub PA, Wanga S, Wang XB (2008) Biological functionalization and fluorescent imaging of carbon nanotubes. Appl Surface Sci 254:1915–1918CrossRef Xua Z, Hub PA, Wanga S, Wang XB (2008) Biological functionalization and fluorescent imaging of carbon nanotubes. Appl Surface Sci 254:1915–1918CrossRef
9.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
10.
Zurück zum Zitat Dai H (2002) Carbon nanotubes: Synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRef Dai H (2002) Carbon nanotubes: Synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRef
11.
Zurück zum Zitat Liu Z, Tabakman S, Welsher K, Dai HJ (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120CrossRef Liu Z, Tabakman S, Welsher K, Dai HJ (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120CrossRef
12.
Zurück zum Zitat Coleman JN, Khan U, Gunko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706CrossRef Coleman JN, Khan U, Gunko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706CrossRef
13.
Zurück zum Zitat Moniruzzaman MI, Winey KI (2004) Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006 39:5194–5205CrossRef Moniruzzaman MI, Winey KI (2004) Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006 39:5194–5205CrossRef
14.
Zurück zum Zitat Coleman JN, Cadek M, Blake R, Nikolosi V, Ryan KP, Belton C et al (2004) High-performance nanotube reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798CrossRef Coleman JN, Cadek M, Blake R, Nikolosi V, Ryan KP, Belton C et al (2004) High-performance nanotube reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798CrossRef
15.
Zurück zum Zitat Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly (e-caprolactone). Macromolecules 40:1538–1545CrossRef Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly (e-caprolactone). Macromolecules 40:1538–1545CrossRef
16.
Zurück zum Zitat Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davis D, Lagoudas D, Sue HJ (2008) Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46:320–328CrossRef Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davis D, Lagoudas D, Sue HJ (2008) Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46:320–328CrossRef
17.
Zurück zum Zitat Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA (2006) Poly(l-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915CrossRef Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA (2006) Poly(l-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915CrossRef
18.
Zurück zum Zitat Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Poly(l-lactide)/nano structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 48:4213–4225CrossRef Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Poly(l-lactide)/nano structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 48:4213–4225CrossRef
19.
Zurück zum Zitat Daniel AU, Chang MKO, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78CrossRef Daniel AU, Chang MKO, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78CrossRef
20.
Zurück zum Zitat Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerômé R (2003) Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on bioglass-filled polylactide foams. Biomed Mater Res A 66:335–346 Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerômé R (2003) Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on bioglass-filled polylactide foams. Biomed Mater Res A 66:335–346
21.
Zurück zum Zitat Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate–polylactide composites. Biomaterials 23:1579–1585CrossRef Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate–polylactide composites. Biomaterials 23:1579–1585CrossRef
22.
Zurück zum Zitat Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23CrossRef Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23CrossRef
23.
Zurück zum Zitat Zhang D, Kandadai MA, Cech J, Roth S, Seamus A, Curran SA (2006) Poly(l-lactide) (PLLA)/multiwalled carbon nanotube (mwcnt) composite: characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915CrossRef Zhang D, Kandadai MA, Cech J, Roth S, Seamus A, Curran SA (2006) Poly(l-lactide) (PLLA)/multiwalled carbon nanotube (mwcnt) composite: characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915CrossRef
24.
Zurück zum Zitat Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J. Polym Sci B 45:3137–3147CrossRef Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J. Polym Sci B 45:3137–3147CrossRef
25.
Zurück zum Zitat Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecule 10:417–424CrossRef Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecule 10:417–424CrossRef
26.
Zurück zum Zitat Jana RN, Cho JW (2008) Thermal stability, crystallization behavior, and phase morphology of poly(ε-caprolactone) diol-grafted-multiwalled carbon nanotubes. J Appl Polym Sci 110:1550–1558CrossRef Jana RN, Cho JW (2008) Thermal stability, crystallization behavior, and phase morphology of poly(ε-caprolactone) diol-grafted-multiwalled carbon nanotubes. J Appl Polym Sci 110:1550–1558CrossRef
27.
Zurück zum Zitat Chen GX, Kim HS, Park BH, Yoon JS (2007) Synthesis of poly(l-lactide)-functionalized multiwalled carbon nanotubes by ring-opening polymerization. Macromol Chem Phys 208:389–398CrossRef Chen GX, Kim HS, Park BH, Yoon JS (2007) Synthesis of poly(l-lactide)-functionalized multiwalled carbon nanotubes by ring-opening polymerization. Macromol Chem Phys 208:389–398CrossRef
28.
Zurück zum Zitat Kim HS, Park BH, Yoon JS, Jin H (2007) Thermal and electrical properties of poly(l-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43:1729–1735CrossRef Kim HS, Park BH, Yoon JS, Jin H (2007) Thermal and electrical properties of poly(l-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43:1729–1735CrossRef
29.
Zurück zum Zitat Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47:8019–8025CrossRef Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47:8019–8025CrossRef
30.
Zurück zum Zitat Saeed K, Park SY (2007) Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. J Appl Polym Sci 104:1957–1963CrossRef Saeed K, Park SY (2007) Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. J Appl Polym Sci 104:1957–1963CrossRef
31.
Zurück zum Zitat Chen GX, Shimizu H (2008) Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(l-lactide) matrix. Polymer 49:943–951CrossRef Chen GX, Shimizu H (2008) Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(l-lactide) matrix. Polymer 49:943–951CrossRef
32.
Zurück zum Zitat Zeng HL, Gao C, Yan DY (2006) Poly(e-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818CrossRef Zeng HL, Gao C, Yan DY (2006) Poly(e-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818CrossRef
33.
Zurück zum Zitat Nabipour Chakoli A, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly(l-lactide-co-ε-caprolactone) biodegradable copolymers. Appl Surface Sci 256:170–177CrossRef Nabipour Chakoli A, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly(l-lactide-co-ε-caprolactone) biodegradable copolymers. Appl Surface Sci 256:170–177CrossRef
34.
Zurück zum Zitat Yoon JT, Lee SC, Jeong YG (2010) Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos Sci Technol 70:776–782CrossRef Yoon JT, Lee SC, Jeong YG (2010) Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos Sci Technol 70:776–782CrossRef
35.
Zurück zum Zitat Miyata T, Masuko T (1997) Morphology of poly(l-lactide) solution-grown crystals. Polymer 38:4003–4009CrossRef Miyata T, Masuko T (1997) Morphology of poly(l-lactide) solution-grown crystals. Polymer 38:4003–4009CrossRef
36.
Zurück zum Zitat Pirlot C, Willems I, Fonseca A, Nagy JB, Delhalle J (2002) Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Adv Eng Mater 4:109–115CrossRef Pirlot C, Willems I, Fonseca A, Nagy JB, Delhalle J (2002) Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Adv Eng Mater 4:109–115CrossRef
37.
Zurück zum Zitat Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131CrossRef Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131CrossRef
38.
Zurück zum Zitat Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan R (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1–14 Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan R (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1–14
Metadaten
Titel
Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes
verfasst von
Maryam Amirian
Ali Nabipour Chakoli
Jie He Sui
Wei Cai
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Polymer Bulletin / Ausgabe 6/2012
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-012-0700-7

Weitere Artikel der Ausgabe 6/2012

Polymer Bulletin 6/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.