Skip to main content
Erschienen in: Polymer Bulletin 2/2015

01.02.2015 | Original Paper

Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites

verfasst von: Abbas Mohammadi, Mehdi Barikani, Mohammad Barmar

Erschienen in: Polymer Bulletin | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, biocompatible magnetic Fe3O4/polyurethane elastomer nanocomposites were synthesized using in situ polymerization method. Pure Fe3O4 nanoparticles were synthesized by coprecipitation method and characterized by X-ray diffraction, Fourier transform infrared (FTIR), vibrating sample magnetometer and transmission electron microscopy. The chemical structure, thermal properties, and mechanical properties of the Fe3O4/PU nanocomposites, as well as the evaluation of effect of nanoparticles content on thermal and mechanical properties, were studied by FTIR, thermogravimetric analyzer (TGA), dynamic mechanical thermal analysis (DMTA), and tensile analysis. The dispersion and morphology of the nanoparticles in the nanocomposites were studied by scanning electron microscopy (SEM) technique. SEM results confirmed that nanoparticles tend to be more agglomerated in polyurethane matrices with increasing of nanoparticles content. TGA analysis also showed a decrease in the thermal stability of Fe3O4/polyurethane nanocomposites compared to pure polyurethane, which was attributed to disruption of hydrogen bonds between polyurethane chains by Fe3O4 nanoparticles. DMTA results also showed an increase in glass transition temperature of Fe3O4/PU nanocomposites compared to pure polyurethane. Biocompatibility studies demonstrated that fabricated nanocomposites can be good candidates for biomedical application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barikani M, Barmar M (1996) Thermoplastic polyurethane elastomers: synthesis and study of effective structural parameters. Iran Polym J 5:231–235 Barikani M, Barmar M (1996) Thermoplastic polyurethane elastomers: synthesis and study of effective structural parameters. Iran Polym J 5:231–235
2.
Zurück zum Zitat Prisacariu C (2011) Polyurethane elastomers, from morphology to mechanical aspects. Springer, WienCrossRef Prisacariu C (2011) Polyurethane elastomers, from morphology to mechanical aspects. Springer, WienCrossRef
3.
Zurück zum Zitat Shimpi NG, Sonawane HA, Mali AD, Mishra S (2014) Effect of nAl(OH)3 on thermal, mechanical and morphological properties of millable polyurethane (MPU) rubber. Polym Bull 71:515–531CrossRef Shimpi NG, Sonawane HA, Mali AD, Mishra S (2014) Effect of nAl(OH)3 on thermal, mechanical and morphological properties of millable polyurethane (MPU) rubber. Polym Bull 71:515–531CrossRef
4.
Zurück zum Zitat Shimpi NG, Sonawane HA, Mali AD, Mishra S (2013) Effect of Mg(OH)2 nanoparticles on thermal, mechanical and morphological properties of millable polyurethane elastomer. J Reinf Plast Comp 32:935–946CrossRef Shimpi NG, Sonawane HA, Mali AD, Mishra S (2013) Effect of Mg(OH)2 nanoparticles on thermal, mechanical and morphological properties of millable polyurethane elastomer. J Reinf Plast Comp 32:935–946CrossRef
5.
Zurück zum Zitat Gangopadhyay S, Hadjipanayis G, Shah S, Sorensen C, Klabunde K, Papaefthymiou V, Kostikas A (1991) Effect of oxide layer on the hysteresis behavior of fine Fe particles. J Appl Phys 70:5888–5890CrossRef Gangopadhyay S, Hadjipanayis G, Shah S, Sorensen C, Klabunde K, Papaefthymiou V, Kostikas A (1991) Effect of oxide layer on the hysteresis behavior of fine Fe particles. J Appl Phys 70:5888–5890CrossRef
6.
Zurück zum Zitat Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37CrossRef Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37CrossRef
7.
Zurück zum Zitat Sen T, Shimpi NG, Mishra S, Sharma R (2014) Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensor Actuator B-Chem 190:120–126CrossRef Sen T, Shimpi NG, Mishra S, Sharma R (2014) Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensor Actuator B-Chem 190:120–126CrossRef
8.
Zurück zum Zitat Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef
9.
Zurück zum Zitat Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46:1222–1244CrossRef Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46:1222–1244CrossRef
10.
Zurück zum Zitat Rossi LM, Silva FP, Vono LLR, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chem 9:379–385CrossRef Rossi LM, Silva FP, Vono LLR, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chem 9:379–385CrossRef
11.
Zurück zum Zitat Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett 4:329–338CrossRef Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett 4:329–338CrossRef
12.
Zurück zum Zitat Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem 16:1181–1188CrossRef Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem 16:1181–1188CrossRef
13.
Zurück zum Zitat Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446CrossRef Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446CrossRef
14.
Zurück zum Zitat Mai Y, Yu Z (2006) Polymer nanocomposites. Woodhead Publishing, CambridgeCrossRef Mai Y, Yu Z (2006) Polymer nanocomposites. Woodhead Publishing, CambridgeCrossRef
15.
Zurück zum Zitat Zhou L, Li G, An T, Li Y (2010) Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment. Res Chem Intermed 36:277–288CrossRef Zhou L, Li G, An T, Li Y (2010) Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment. Res Chem Intermed 36:277–288CrossRef
16.
Zurück zum Zitat Xu XX, Zheng YF (2006) Synthesis and characterization of magnetic nanoparticles and their reinforcement in polyurethane film. Key Eng Mater 324:659–662CrossRef Xu XX, Zheng YF (2006) Synthesis and characterization of magnetic nanoparticles and their reinforcement in polyurethane film. Key Eng Mater 324:659–662CrossRef
17.
Zurück zum Zitat Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444:227–235CrossRef Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444:227–235CrossRef
18.
Zurück zum Zitat Pirmoradi FN, Cheng L, Chiao M (2009) A magnetic poly (dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles. J Micromech Microeng 20:015032CrossRef Pirmoradi FN, Cheng L, Chiao M (2009) A magnetic poly (dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles. J Micromech Microeng 20:015032CrossRef
19.
Zurück zum Zitat Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2009) Effect of Fe3O4and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Poly Adv Technol 20:550–557CrossRef Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2009) Effect of Fe3O4and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Poly Adv Technol 20:550–557CrossRef
20.
Zurück zum Zitat Huang X, Lu M, Zhang X, Wen G, Zhou Y, Fei L (2012) Carbon microtubes Fe3O4 nanocomposite with improved wave absorbing performance. Scripta Mater 67:613–616CrossRef Huang X, Lu M, Zhang X, Wen G, Zhou Y, Fei L (2012) Carbon microtubes Fe3O4 nanocomposite with improved wave absorbing performance. Scripta Mater 67:613–616CrossRef
21.
Zurück zum Zitat Santerre J, Woodhouse K, Laroche G, Labow R (2005) Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 26:7457–7470CrossRef Santerre J, Woodhouse K, Laroche G, Labow R (2005) Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 26:7457–7470CrossRef
22.
Zurück zum Zitat Yeganeh H, Barikani M, Noei Khodabadi F (2000) Synthesis and properties of novel thermoplastic poly (urethane-imide)s. Eur Polym J 36:2207–2211CrossRef Yeganeh H, Barikani M, Noei Khodabadi F (2000) Synthesis and properties of novel thermoplastic poly (urethane-imide)s. Eur Polym J 36:2207–2211CrossRef
23.
Zurück zum Zitat Hahn C, Keul H, Möller M (2012) Hydroxyl-functional polyurethanes and polyesters: synthesis, properties and potential biomedical application. Polym Int 61:1048–1060CrossRef Hahn C, Keul H, Möller M (2012) Hydroxyl-functional polyurethanes and polyesters: synthesis, properties and potential biomedical application. Polym Int 61:1048–1060CrossRef
24.
Zurück zum Zitat Liu P, Ye L, Liu Y, Nie F (2011) Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer. Polym Bull 66:503–515CrossRef Liu P, Ye L, Liu Y, Nie F (2011) Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer. Polym Bull 66:503–515CrossRef
25.
Zurück zum Zitat Ashjari M, Mahdavian AR, Ebrahimi NG, Mosleh Y (2010) Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J Inorg Organomet Polym 20:213–219CrossRef Ashjari M, Mahdavian AR, Ebrahimi NG, Mosleh Y (2010) Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J Inorg Organomet Polym 20:213–219CrossRef
26.
Zurück zum Zitat Mohammadi A, Barikani M, Barmar M (2013) Effect of polyol structure on the properties of the resultant magnetic polyurethane elastomer nanocomposites. Polym Adv Technol 24:978–985CrossRef Mohammadi A, Barikani M, Barmar M (2013) Effect of polyol structure on the properties of the resultant magnetic polyurethane elastomer nanocomposites. Polym Adv Technol 24:978–985CrossRef
27.
Zurück zum Zitat Mohammadi A, Barikani M, Barmar M (2013) Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. J Mater Sci 48:7493–7502CrossRef Mohammadi A, Barikani M, Barmar M (2013) Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. J Mater Sci 48:7493–7502CrossRef
28.
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef
29.
Zurück zum Zitat Barikani M, Hepburn C (1986) Isocyanurate crosslinking as a means of producing thermally stable polyurethane elastomers. Cell Polym 5:169–185 Barikani M, Hepburn C (1986) Isocyanurate crosslinking as a means of producing thermally stable polyurethane elastomers. Cell Polym 5:169–185
30.
Zurück zum Zitat Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Fe3O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313:293–299CrossRef Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Fe3O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313:293–299CrossRef
31.
Zurück zum Zitat Hanifehpour Y, Mirtamizdoust B, Farzam AR, Joo SW (2012) Synthesis and crystal Sstructure of [Pb(phen)(μ-N3)(μ-NO3)]n and its thermal decomposition to PbO nanoparticles. J Magn Magn Mater 22:957–962 Hanifehpour Y, Mirtamizdoust B, Farzam AR, Joo SW (2012) Synthesis and crystal Sstructure of [Pb(phen)(μ-N3)(μ-NO3)]n and its thermal decomposition to PbO nanoparticles. J Magn Magn Mater 22:957–962
32.
Zurück zum Zitat Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL et al (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738CrossRef Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL et al (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738CrossRef
33.
Zurück zum Zitat Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci 212:49–57CrossRef Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci 212:49–57CrossRef
34.
Zurück zum Zitat Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445–3450CrossRef Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445–3450CrossRef
35.
Zurück zum Zitat Xuan S, Hao L, Jiang W, Gong X, Hu Y, Chen Z (2007) Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J Magn Magn Mater 308:210–213CrossRef Xuan S, Hao L, Jiang W, Gong X, Hu Y, Chen Z (2007) Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J Magn Magn Mater 308:210–213CrossRef
36.
Zurück zum Zitat Wang D, Zhang G, Zhang Y, Gao Y, Zhao Y, Zhou C et al (2007) Synthesis, characterization, and properties of novel polyetherester polyols and developed polyurethanes. J Appl Polym Sci 103:417–424CrossRef Wang D, Zhang G, Zhang Y, Gao Y, Zhao Y, Zhou C et al (2007) Synthesis, characterization, and properties of novel polyetherester polyols and developed polyurethanes. J Appl Polym Sci 103:417–424CrossRef
37.
Zurück zum Zitat Mulligan DR, Imrie CT, Larcey P (1996) Characterization of side-chain liquid crystal polymers using dynamic mechanical thermal analysis and dielectric thermal analysis. J Mater Sci 31:1985–1989CrossRef Mulligan DR, Imrie CT, Larcey P (1996) Characterization of side-chain liquid crystal polymers using dynamic mechanical thermal analysis and dielectric thermal analysis. J Mater Sci 31:1985–1989CrossRef
38.
Zurück zum Zitat Yeganeh H, Jamshidi H, Jamshidi S (2007) Synthesis and properties of novel biodegradable poly(ε-caprolactone)/poly(ethylene glycol)-based polyurethane elastomers. Polym Int 56:41–49CrossRef Yeganeh H, Jamshidi H, Jamshidi S (2007) Synthesis and properties of novel biodegradable poly(ε-caprolactone)/poly(ethylene glycol)-based polyurethane elastomers. Polym Int 56:41–49CrossRef
Metadaten
Titel
Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites
verfasst von
Abbas Mohammadi
Mehdi Barikani
Mohammad Barmar
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 2/2015
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-014-1268-1

Weitere Artikel der Ausgabe 2/2015

Polymer Bulletin 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.