Skip to main content
Erschienen in: Polymer Bulletin 7/2023

25.08.2022 | Review Paper

A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers

verfasst von: Abinash Das, Togam Ringu, Sampad Ghosh, Nabakumar Pramanik

Erschienen in: Polymer Bulletin | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biopolymers are mainly the polymers which are created or obtained from living creatures such as plants and bacteria rather than petroleum, which has traditionally been the source of polymers. Biopolymers are chain-like molecules composed of repeated chemical blocks derived from renewable resources that may decay in the environment. The usage of biomaterials is becoming more popular as a means of reducing the use of non-renewable resources and reducing environmental pollution produced by synthetic materials. Biopolymers' biodegradability and non-toxic nature help to maintain our environment clean and safe. This study discusses how to improve the mechanical and physical characteristics of biopolymers, particularly in the realm of bioengineering. The paper begins with a fundamental introduction and progresses to a detailed examination of synthesis and a unique investigation of several recent focused biopolymers with mechanical, physical, and biological characterization. Biopolymers' unique non-toxicity, biodegradability, biocompatibility, and eco-friendly features are boosting their applications, especially in bioengineering fields, including agriculture, pharmaceuticals, biomedical, ecological, industrial, aqua treatment, and food packaging, among others, at the end of this paper. The purpose of this paper is to provide an overview of the relevance of biopolymers in smart and novel bioengineering applications.

Graphical abstract

The Graphical abstract represents the biological sources and applications of biopolymers. Plants, bacteria, animals, agriculture wastes, and fossils are all biological sources for biopolymers, which are chemically manufactured from biological monomer units, including sugars, amino acids, natural fats and oils, and nucleotides. Biopolymer modification (chemical or physical) is recognized as a crucial technique for modifying physical and chemical characteristics, resulting in novel materials with improved capabilities and allowing them to be explored to their full potential in many fields of application such as tissue engineering, drug delivery, agriculture, biomedical, food industries, and industrial applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohan S, Oluwafemi OS, Kalarikkal N, Thomas S, Songca SP (2016) Biopolymers–application in nanoscience and nanotechnology. Recent Adv Biopolym 1(1):47–66 Mohan S, Oluwafemi OS, Kalarikkal N, Thomas S, Songca SP (2016) Biopolymers–application in nanoscience and nanotechnology. Recent Adv Biopolym 1(1):47–66
2.
Zurück zum Zitat Hernández N, Williams RC, Cochran EW (2014) The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org Biomol Chem 12(18):2834–2849PubMed Hernández N, Williams RC, Cochran EW (2014) The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org Biomol Chem 12(18):2834–2849PubMed
3.
Zurück zum Zitat Rao MG, Bharathi P, Akila RM (2014) A comprehensive review on biopolymers. Sci Revs Chem Commun 4(2):61–68 Rao MG, Bharathi P, Akila RM (2014) A comprehensive review on biopolymers. Sci Revs Chem Commun 4(2):61–68
4.
Zurück zum Zitat Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res JCDR 9(9):21 Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res JCDR 9(9):21
5.
Zurück zum Zitat Pu W, Shen C, Wei B, Yang Y, Li Y (2018) A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. J Ind Eng Chem 61:1–11 Pu W, Shen C, Wei B, Yang Y, Li Y (2018) A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. J Ind Eng Chem 61:1–11
6.
Zurück zum Zitat Ekiert M, Mlyniec A, Uhl T (2015) The influence of degradation on the viscosity and molecular mass of poly (lactide acid) biopolymer. Diagnostyka 16(4):63–70 Ekiert M, Mlyniec A, Uhl T (2015) The influence of degradation on the viscosity and molecular mass of poly (lactide acid) biopolymer. Diagnostyka 16(4):63–70
7.
Zurück zum Zitat Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498PubMed Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498PubMed
8.
Zurück zum Zitat Singh SK, Gross RA (2001) Overview: introduction to polysaccharides, agroproteins, and poly (amino acids) Singh SK, Gross RA (2001) Overview: introduction to polysaccharides, agroproteins, and poly (amino acids)
9.
Zurück zum Zitat Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103(1):143–157PubMed Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103(1):143–157PubMed
10.
Zurück zum Zitat Steinbüchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16(6):607–613PubMed Steinbüchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16(6):607–613PubMed
11.
Zurück zum Zitat Hasnain MS, Ahmad SA, Chaudhary N, Hoda MN, Nayak AK (2019) Biodegradable polymer matrix nanocomposites for bone tissue engineering. Applications of nanocomposite materials in orthopedics. Woodhead Publishing, Sawston, pp 1–37 Hasnain MS, Ahmad SA, Chaudhary N, Hoda MN, Nayak AK (2019) Biodegradable polymer matrix nanocomposites for bone tissue engineering. Applications of nanocomposite materials in orthopedics. Woodhead Publishing, Sawston, pp 1–37
12.
Zurück zum Zitat Kundu J, Pati F, Jeong YH, Cho DW (2013) Biomaterials for biofabrication of 3D tissue scaffolds. Biofabrication. William Andrew Publishing, Norwich, pp 23–46 Kundu J, Pati F, Jeong YH, Cho DW (2013) Biomaterials for biofabrication of 3D tissue scaffolds. Biofabrication. William Andrew Publishing, Norwich, pp 23–46
13.
Zurück zum Zitat Zhang Z, Ortiz O, Goyal R, Kohn J (2014) Biodegradable polymers. Handbook of polymer applications in medicine and medical devices. pp 303–335 Zhang Z, Ortiz O, Goyal R, Kohn J (2014) Biodegradable polymers. Handbook of polymer applications in medicine and medical devices. pp 303–335
14.
Zurück zum Zitat Wang Y, Wang X, Xie Y, Zhang K (2018) Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose 25(7):3703–3731 Wang Y, Wang X, Xie Y, Zhang K (2018) Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose 25(7):3703–3731
15.
Zurück zum Zitat Sun Y, Gu J, Tan H, Zhang Y, Huo P (2018) Physicochemical properties of starch adhesives enhanced by esterification modification with dodecenyl succinic anhydride. Int J Biol Macromol 112:1257–1263PubMed Sun Y, Gu J, Tan H, Zhang Y, Huo P (2018) Physicochemical properties of starch adhesives enhanced by esterification modification with dodecenyl succinic anhydride. Int J Biol Macromol 112:1257–1263PubMed
16.
Zurück zum Zitat Peng XW, Ren JL, Sun RC (2010) Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromol 11(12):3519–3524 Peng XW, Ren JL, Sun RC (2010) Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromol 11(12):3519–3524
17.
Zurück zum Zitat Santagapita PR, Brizuela LG, Mazzobre MF, Ramirez HL, Corti HR, Santana RV, Buera MP (2008) Structure/function relationships of several biopolymers as related to invertase stability in dehydrated systems. Biomacromol 9(2):741–747 Santagapita PR, Brizuela LG, Mazzobre MF, Ramirez HL, Corti HR, Santana RV, Buera MP (2008) Structure/function relationships of several biopolymers as related to invertase stability in dehydrated systems. Biomacromol 9(2):741–747
18.
Zurück zum Zitat Tsereteli G, Belopolskaya T, Grunina N (2008) Dehydrated native biopolymers-a unique representative of glassy systems. J Therm Anal Calorim 92(3):711–716 Tsereteli G, Belopolskaya T, Grunina N (2008) Dehydrated native biopolymers-a unique representative of glassy systems. J Therm Anal Calorim 92(3):711–716
19.
Zurück zum Zitat Ettelaie R, Tasker A, Chen J, Alevisopoulos S (2013) Kinetics of food biopolymer film dehydration: experimental studies and mathematical modeling. Ind Eng Chem Res 52(22):7391–7402 Ettelaie R, Tasker A, Chen J, Alevisopoulos S (2013) Kinetics of food biopolymer film dehydration: experimental studies and mathematical modeling. Ind Eng Chem Res 52(22):7391–7402
20.
Zurück zum Zitat Koseva N, Mitova V, Todorova Z, Tsacheva I (2019) Nanomaterials derived from phosphorus-containing polymers: diversity of structures and applications. Polymeric nanomaterials in nanotherapeutics. Elsevier, Amsterdam, pp 183–233 Koseva N, Mitova V, Todorova Z, Tsacheva I (2019) Nanomaterials derived from phosphorus-containing polymers: diversity of structures and applications. Polymeric nanomaterials in nanotherapeutics. Elsevier, Amsterdam, pp 183–233
21.
Zurück zum Zitat Fink JK (2013) Reactive polymers fundamentals and applications: a concise guide to industrial polymers. William Andrew, Norwich Fink JK (2013) Reactive polymers fundamentals and applications: a concise guide to industrial polymers. William Andrew, Norwich
22.
Zurück zum Zitat Blayney AJ, Perepichka IF, Wudl F, Perepichka DF (2014) Advances and challenges in the synthesis of poly (p-phenylene vinylene)-based polymers. Isr J Chem 54(5–6):674–688 Blayney AJ, Perepichka IF, Wudl F, Perepichka DF (2014) Advances and challenges in the synthesis of poly (p-phenylene vinylene)-based polymers. Isr J Chem 54(5–6):674–688
23.
Zurück zum Zitat Boskhomdzhiev AP, Bonartsev AP, Ivanov EA, Makhina TK, Myshkina VL, Bagrov DV, Iordanskii AL et al (2010) Hydrolytic degradation of biopolymer systems based on poly-3-hydroxybutyrate. Kinetic and structural aspects. Int Polym Sci Technol 37(11):25–30 Boskhomdzhiev AP, Bonartsev AP, Ivanov EA, Makhina TK, Myshkina VL, Bagrov DV, Iordanskii AL et al (2010) Hydrolytic degradation of biopolymer systems based on poly-3-hydroxybutyrate. Kinetic and structural aspects. Int Polym Sci Technol 37(11):25–30
24.
Zurück zum Zitat Machmudah S, Kanda H, Goto M (2017) Hydrolysis of biopolymers in near-critical and subcritical water. Water extraction of bioactive compounds. Elsevier, Amsterdam, pp 69–107 Machmudah S, Kanda H, Goto M (2017) Hydrolysis of biopolymers in near-critical and subcritical water. Water extraction of bioactive compounds. Elsevier, Amsterdam, pp 69–107
25.
Zurück zum Zitat Feng C, Lotti T, Canziani R, Lin Y, Tagliabue C, Malpei F (2021) Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: a critical review. Sci Total Environ 753:142051PubMed Feng C, Lotti T, Canziani R, Lin Y, Tagliabue C, Malpei F (2021) Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: a critical review. Sci Total Environ 753:142051PubMed
26.
Zurück zum Zitat Schambeck CM, Magnus BS, de Souza LCR, Leite WRM, Derlon N, Guimaraes LB, da Costa RHR (2020) Biopolymers recovery: dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum. J Environ Manage 263:110394PubMed Schambeck CM, Magnus BS, de Souza LCR, Leite WRM, Derlon N, Guimaraes LB, da Costa RHR (2020) Biopolymers recovery: dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum. J Environ Manage 263:110394PubMed
27.
Zurück zum Zitat Crini G (2019) Historical review on chitin and chitosan biopolymers. Environ Chem Lett 17(4):1623–1643 Crini G (2019) Historical review on chitin and chitosan biopolymers. Environ Chem Lett 17(4):1623–1643
28.
Zurück zum Zitat Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:1–29 Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:1–29
29.
Zurück zum Zitat Sánchez-Machado DI, López-Cervantes J, Correa-Murrieta MA, Sánchez-Duarte RG, Cruz-Flores P, de la Mora-López GS (2019) Chitosan. Nonvitamin and nonmineral nutritional supplements. Academic Press, New York, pp 485–493t Sánchez-Machado DI, López-Cervantes J, Correa-Murrieta MA, Sánchez-Duarte RG, Cruz-Flores P, de la Mora-López GS (2019) Chitosan. Nonvitamin and nonmineral nutritional supplements. Academic Press, New York, pp 485–493t
30.
Zurück zum Zitat Zivanovic S, Davis RH, Golden DA (2015) Chitosan as an antimicrobial in food products. Handb Nat Antimicrob Food Saf Qual 20(1):153–181 Zivanovic S, Davis RH, Golden DA (2015) Chitosan as an antimicrobial in food products. Handb Nat Antimicrob Food Saf Qual 20(1):153–181
31.
Zurück zum Zitat Lizardi-Mendoza J, Monal WMA, Valencia FMG (2016) Chemical characteristics and functional properties of chitosan. Chitosan in the preservation of agricultural commodities. Academic Press, New York, pp 3–31 Lizardi-Mendoza J, Monal WMA, Valencia FMG (2016) Chemical characteristics and functional properties of chitosan. Chitosan in the preservation of agricultural commodities. Academic Press, New York, pp 3–31
32.
Zurück zum Zitat Sharma S, Barman K, Siddiqui MW (2016) Chitosan: Properties and roles in postharvest quality preservation of horticultural crops. Eco-friendly technology for postharvest produce quality. Academic Press, New York, pp 269–296 Sharma S, Barman K, Siddiqui MW (2016) Chitosan: Properties and roles in postharvest quality preservation of horticultural crops. Eco-friendly technology for postharvest produce quality. Academic Press, New York, pp 269–296
33.
Zurück zum Zitat Ghosh S, Ghosh S, Pramanik N (2020) Bio-evaluation of doxorubicin (DOX)-incorporated hydroxyapatite (HAp)-chitosan (CS) nanocomposite triggered on osteosarcoma cells. Adv Compos Hybrid Mater 3(3):303–314 Ghosh S, Ghosh S, Pramanik N (2020) Bio-evaluation of doxorubicin (DOX)-incorporated hydroxyapatite (HAp)-chitosan (CS) nanocomposite triggered on osteosarcoma cells. Adv Compos Hybrid Mater 3(3):303–314
34.
Zurück zum Zitat Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Fundamentals and applications of chitosan. Sustainable agriculture reviews 35. Springer, Cham, pp 49–123 Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Fundamentals and applications of chitosan. Sustainable agriculture reviews 35. Springer, Cham, pp 49–123
35.
Zurück zum Zitat Vargas M, Sánchez-González L, Cháfer M, Chiralt A, González-Martínez C (2012) Edible chitosan coatings for fresh and minimally processed foods. Emerg Food Packag Technol 66–95 Vargas M, Sánchez-González L, Cháfer M, Chiralt A, González-Martínez C (2012) Edible chitosan coatings for fresh and minimally processed foods. Emerg Food Packag Technol 66–95
36.
Zurück zum Zitat Shahidi F (2007) Chitin and chitosan from marine by-products. Maximising the value of marine by-products. Woodhead Publishing, Sawston, pp 340–373 Shahidi F (2007) Chitin and chitosan from marine by-products. Maximising the value of marine by-products. Woodhead Publishing, Sawston, pp 340–373
37.
Zurück zum Zitat Das MP, Suguna PR, Prasad KARPURAM, Vijaylakshmi JV, Renuka M (2017) Extraction and characterization of gelatin: a functional biopolymer. Int J Pharm Pharm Sci 9(239):10–22159 Das MP, Suguna PR, Prasad KARPURAM, Vijaylakshmi JV, Renuka M (2017) Extraction and characterization of gelatin: a functional biopolymer. Int J Pharm Pharm Sci 9(239):10–22159
38.
Zurück zum Zitat Chanchal A, Vohra R, Elesela S, Bhushan L, Kumar S, Kumar S, Pandey R (2014) Gelatin biopolymer: a journey from micro to nano. J Pharm Res 8(10):1387–1397 Chanchal A, Vohra R, Elesela S, Bhushan L, Kumar S, Kumar S, Pandey R (2014) Gelatin biopolymer: a journey from micro to nano. J Pharm Res 8(10):1387–1397
39.
Zurück zum Zitat Vlierberghe SV, Graulus G-J, Samal SK, Nieuwenhove IV, Dubruel P (2014) Porous hydrogel biomedical foam scaffolds for tissue repair. Biomedical foams for tissue engineering applications. Woodhead Publishing, Sawston, pp 335–390 Vlierberghe SV, Graulus G-J, Samal SK, Nieuwenhove IV, Dubruel P (2014) Porous hydrogel biomedical foam scaffolds for tissue repair. Biomedical foams for tissue engineering applications. Woodhead Publishing, Sawston, pp 335–390
40.
Zurück zum Zitat Silva EVCD, Lourenço LDFH, Pena RS (2017) Optimization and characterization of gelatin from kumakuma (Brachyplatystoma filamentosum) skin. CyTA-J Food 15(3):361–368 Silva EVCD, Lourenço LDFH, Pena RS (2017) Optimization and characterization of gelatin from kumakuma (Brachyplatystoma filamentosum) skin. CyTA-J Food 15(3):361–368
41.
Zurück zum Zitat Wangtueai S, Noomhorm A (2009) Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Sci Technol 42(4):825–834 Wangtueai S, Noomhorm A (2009) Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Sci Technol 42(4):825–834
42.
Zurück zum Zitat Sockalingam K, Abdullah HZ (2015) Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales. AIP conference proceedings. AIP Publishing LLC, Melville, p 020053 Sockalingam K, Abdullah HZ (2015) Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales. AIP conference proceedings. AIP Publishing LLC, Melville, p 020053
43.
Zurück zum Zitat Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. Biopolymer composites in electronics. Elsevier, Amsterdsam, pp 27–128 Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. Biopolymer composites in electronics. Elsevier, Amsterdsam, pp 27–128
44.
Zurück zum Zitat Belhassen R, Vilaseca Morera F, Mutjé Pujol P, Boufi S (2011) Preparation and properties of starch-based biopolymers modified with difunctional isocyanates. BioResources 6(1):81–102 Belhassen R, Vilaseca Morera F, Mutjé Pujol P, Boufi S (2011) Preparation and properties of starch-based biopolymers modified with difunctional isocyanates. BioResources 6(1):81–102
45.
Zurück zum Zitat Shrestha AK, Halley PJ(2014) Starch modification to develop novel starch-biopolymer blends: state of art and perspectives. Starch Polym 105–143 Shrestha AK, Halley PJ(2014) Starch modification to develop novel starch-biopolymer blends: state of art and perspectives. Starch Polym 105–143
46.
Zurück zum Zitat Mohd Makhtar NS, Muhd Rodhi MN, Musa M, Ku Hamid KH (2013) Thermal behavior of Tacca leontopetaloides starch-based biopolymer. Int J Polym Sci Mohd Makhtar NS, Muhd Rodhi MN, Musa M, Ku Hamid KH (2013) Thermal behavior of Tacca leontopetaloides starch-based biopolymer. Int J Polym Sci
47.
Zurück zum Zitat Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3(6):366–375 Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3(6):366–375
48.
Zurück zum Zitat Temesgen S, Rennert M, Tesfaye T, Nase M (2021) Review on spinning of biopolymer fibers from starch. Polymers 13(7):1121PubMedPubMedCentral Temesgen S, Rennert M, Tesfaye T, Nase M (2021) Review on spinning of biopolymer fibers from starch. Polymers 13(7):1121PubMedPubMedCentral
49.
Zurück zum Zitat Hazrol MD, Sapuan SM, Zainudin ES, Zuhri MYM, Abdul Wahab NI (2021) Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers 13(2):242PubMedPubMedCentral Hazrol MD, Sapuan SM, Zainudin ES, Zuhri MYM, Abdul Wahab NI (2021) Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers 13(2):242PubMedPubMedCentral
50.
Zurück zum Zitat Kumar P, Senthamilselvi S, Govindaraju M (2014) Phloroglucinol-encapsulated starch biopolymer: preparation, antioxidant and cytotoxic effects on HepG2 liver cancer cell lines. RSC Adv 4(51):26787–26795 Kumar P, Senthamilselvi S, Govindaraju M (2014) Phloroglucinol-encapsulated starch biopolymer: preparation, antioxidant and cytotoxic effects on HepG2 liver cancer cell lines. RSC Adv 4(51):26787–26795
51.
Zurück zum Zitat Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W (2021) A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 112:532–546 Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W (2021) A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 112:532–546
52.
Zurück zum Zitat Agarwal D, Hewson L, Foster TJ (2018) A comparison of the sensory and rheological properties of different cellulosic fibres for food. Food Funct 9(2):1144–1151PubMed Agarwal D, Hewson L, Foster TJ (2018) A comparison of the sensory and rheological properties of different cellulosic fibres for food. Food Funct 9(2):1144–1151PubMed
53.
Zurück zum Zitat Brigham C (2018) Biopolymers: biodegradable alternatives to traditional plastics. Green chemistry. Elsevier, Amsterdam, pp 753–770 Brigham C (2018) Biopolymers: biodegradable alternatives to traditional plastics. Green chemistry. Elsevier, Amsterdam, pp 753–770
54.
Zurück zum Zitat Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1–3):101–106 Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1–3):101–106
55.
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603 Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603
56.
Zurück zum Zitat Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73(12):4565–4569PubMedPubMedCentral Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73(12):4565–4569PubMedPubMedCentral
57.
Zurück zum Zitat Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohyd Polym 135:18–26 Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohyd Polym 135:18–26
58.
Zurück zum Zitat Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, Klein-Nulend J (2021) Cellulose and its derivatives: towards biomedical applications. Cellulose 28(4):1893–1931 Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, Klein-Nulend J (2021) Cellulose and its derivatives: towards biomedical applications. Cellulose 28(4):1893–1931
59.
Zurück zum Zitat Aggarwal N, Altgärde N, Svedhem S, Zhang K, Fischer S, Groth T (2013) Effect of molecular composition of heparin and cellulose sulfate on multilayer formation and cell response. Langmuir 29(45):13853–13864PubMed Aggarwal N, Altgärde N, Svedhem S, Zhang K, Fischer S, Groth T (2013) Effect of molecular composition of heparin and cellulose sulfate on multilayer formation and cell response. Langmuir 29(45):13853–13864PubMed
60.
Zurück zum Zitat Yew CHT, Azari P, Choi JR, Li F, Pingguan-Murphy B (2018) Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay. Anal Chim Acta 1009:81–88PubMed Yew CHT, Azari P, Choi JR, Li F, Pingguan-Murphy B (2018) Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay. Anal Chim Acta 1009:81–88PubMed
61.
Zurück zum Zitat Zhang H, Zhang F, Yuan R (2020) Applications of natural polymer-based hydrogels in the food industry. Hydrogels based on natural polymers. Elsevier, Amsterdam, pp 357–410 Zhang H, Zhang F, Yuan R (2020) Applications of natural polymer-based hydrogels in the food industry. Hydrogels based on natural polymers. Elsevier, Amsterdam, pp 357–410
62.
Zurück zum Zitat Banerjee S, Bhattacharya S (2012) Food gels: gelling process and new applications. Crit Rev Food Sci Nutr 52(4):334–346PubMed Banerjee S, Bhattacharya S (2012) Food gels: gelling process and new applications. Crit Rev Food Sci Nutr 52(4):334–346PubMed
63.
Zurück zum Zitat Ngo DQ, Nguyen TC, Nguyen TD, Phung TL, Vu QT, Thai H (2021) A novel biopolymer nano-complex based on fish scale collagen, konjac glucomannan, camellia chrysantha polyphenols and ginsenoside Rb1: preparation, characterization and its bioactivity. J Polym Environ 29(7):2150–2163 Ngo DQ, Nguyen TC, Nguyen TD, Phung TL, Vu QT, Thai H (2021) A novel biopolymer nano-complex based on fish scale collagen, konjac glucomannan, camellia chrysantha polyphenols and ginsenoside Rb1: preparation, characterization and its bioactivity. J Polym Environ 29(7):2150–2163
64.
Zurück zum Zitat Nayak AK, Bera H, Hasnain MS, Pal D (2018) Synthesis and characterization of graft copolymers of plant polysaccharides. Biopolymer grafting. Elsevier, Amsterdam, pp 1–62 Nayak AK, Bera H, Hasnain MS, Pal D (2018) Synthesis and characterization of graft copolymers of plant polysaccharides. Biopolymer grafting. Elsevier, Amsterdam, pp 1–62
65.
Zurück zum Zitat Alonso JM, Goycoolea FM, Higuera-Ciapara I (2008) Chitosan-polysaccharide blended nanoparticles for controlled drug delivery. Natural-based polymers for biomedical applications. Woodhead Publishing, Sawston, pp 644–679 Alonso JM, Goycoolea FM, Higuera-Ciapara I (2008) Chitosan-polysaccharide blended nanoparticles for controlled drug delivery. Natural-based polymers for biomedical applications. Woodhead Publishing, Sawston, pp 644–679
67.
Zurück zum Zitat Alonso MJ, Sánchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55(11):1451–1463PubMed Alonso MJ, Sánchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55(11):1451–1463PubMed
68.
Zurück zum Zitat Zhang H, Yoshimura M, Nishinari K, Williams MAK, Foster TJ, Norton IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolym Orig Res Biomol 59(1):38–50 Zhang H, Yoshimura M, Nishinari K, Williams MAK, Foster TJ, Norton IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolym Orig Res Biomol 59(1):38–50
69.
Zurück zum Zitat Motsoeneng TS, Mochane MJ, Mokhena TC, Mathew MJ (2020) Structure and properties of lignin-based biopolymers in polymer production. Soil Microenviron Bioremed Polym Prod 375–392 Motsoeneng TS, Mochane MJ, Mokhena TC, Mathew MJ (2020) Structure and properties of lignin-based biopolymers in polymer production. Soil Microenviron Bioremed Polym Prod 375–392
70.
Zurück zum Zitat Tanase-Opedal M, Espinosa E, Rodríguez A, Chinga-Carrasco G (2019) Lignin: a biopolymer from forestry biomass for biocomposites and 3D printing. Materials 12(18):3006PubMedPubMedCentral Tanase-Opedal M, Espinosa E, Rodríguez A, Chinga-Carrasco G (2019) Lignin: a biopolymer from forestry biomass for biocomposites and 3D printing. Materials 12(18):3006PubMedPubMedCentral
71.
Zurück zum Zitat Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. Monomers, polymers and composites from renewable resources. pp 201–224 Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. Monomers, polymers and composites from renewable resources. pp 201–224
72.
Zurück zum Zitat Lievonen M, Valle-Delgado JJ, Mattinen ML, Hult EL, Lintinen K, Kostiainen MA, Österberg M et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18(5):1416–1422 Lievonen M, Valle-Delgado JJ, Mattinen ML, Hult EL, Lintinen K, Kostiainen MA, Österberg M et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18(5):1416–1422
73.
Zurück zum Zitat Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Biopolymers. Springer, Berlin, Heidelberg, pp 1–63 Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Biopolymers. Springer, Berlin, Heidelberg, pp 1–63
74.
Zurück zum Zitat Li T, Lü S, Wang Z, Huang M, Yan J, Liu M (2021) Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers. Sci Total Environ 765:142745PubMed Li T, Lü S, Wang Z, Huang M, Yan J, Liu M (2021) Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers. Sci Total Environ 765:142745PubMed
75.
Zurück zum Zitat Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(5):751PubMedPubMedCentral Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(5):751PubMedPubMedCentral
76.
Zurück zum Zitat Guedes AC, Amaro HM, Sousa-Pinto I, Malcata FX (2019) Algal spent biomass—A pool of applications. Biofuels from algae. Elsevier, Amsterdasm, pp 397–433 Guedes AC, Amaro HM, Sousa-Pinto I, Malcata FX (2019) Algal spent biomass—A pool of applications. Biofuels from algae. Elsevier, Amsterdasm, pp 397–433
77.
Zurück zum Zitat Carlsson AS (ed) (2007) Micro-and macro-algae: utility for industrial applications: outputs from the EPOBIO project. CPL Press, Cambridge Carlsson AS (ed) (2007) Micro-and macro-algae: utility for industrial applications: outputs from the EPOBIO project. CPL Press, Cambridge
78.
Zurück zum Zitat Smitha S, Rangaswamy K (2020) Effect of biopolymer treatment on pore pressure response and dynamic properties of silty sand. J Mater Civ Eng 32(8):04020217 Smitha S, Rangaswamy K (2020) Effect of biopolymer treatment on pore pressure response and dynamic properties of silty sand. J Mater Civ Eng 32(8):04020217
79.
Zurück zum Zitat Khatami HR, O’Kelly BC (2013) Improving mechanical properties of sand using biopolymers. J Geotech Geoenviron Eng 139(8):1402–1406 Khatami HR, O’Kelly BC (2013) Improving mechanical properties of sand using biopolymers. J Geotech Geoenviron Eng 139(8):1402–1406
80.
Zurück zum Zitat Smitha S, Sachan A (2016) Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. Int J Geotech Eng 10(4):387–400 Smitha S, Sachan A (2016) Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. Int J Geotech Eng 10(4):387–400
81.
Zurück zum Zitat Dungani R, Sumardi I, Suhaya Y, Aditiawati P, Dody S, Rosamah E, Karliati T (2021) Reinforcing effects of seaweed nanoparticles in agar-based biopolymer composite: physical, water vapor barrier, mechanical, and biodegradable properties. BioResources 16(3):5118–5132 Dungani R, Sumardi I, Suhaya Y, Aditiawati P, Dody S, Rosamah E, Karliati T (2021) Reinforcing effects of seaweed nanoparticles in agar-based biopolymer composite: physical, water vapor barrier, mechanical, and biodegradable properties. BioResources 16(3):5118–5132
82.
Zurück zum Zitat Zeece M (2020) Chapter Seven—Food additives. In: Zeece M (ed) Introduction to the chemistry of food. Academic Press, Cambridge, MA, USA, pp 251–311 Zeece M (2020) Chapter Seven—Food additives. In: Zeece M (ed) Introduction to the chemistry of food. Academic Press, Cambridge, MA, USA, pp 251–311
83.
Zurück zum Zitat Song EH, Shang J, Ratner DM (2012) Polysaccharides. In: Polymer science: a comprehensive reference. pp 137–155 Song EH, Shang J, Ratner DM (2012) Polysaccharides. In: Polymer science: a comprehensive reference. pp 137–155
84.
Zurück zum Zitat Baldauf NA, Rodriguez-Romo LA, Männig A, Yousef AE, Rodriguez-Saona LE (2007) Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-transform mid-infrared spectroscopy. J Microbiol Methods 68(1):106–114PubMed Baldauf NA, Rodriguez-Romo LA, Männig A, Yousef AE, Rodriguez-Saona LE (2007) Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-transform mid-infrared spectroscopy. J Microbiol Methods 68(1):106–114PubMed
85.
Zurück zum Zitat Liu J, Lin S, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298(1):117–125PubMed Liu J, Lin S, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298(1):117–125PubMed
86.
Zurück zum Zitat Mallakpour S, Rashidimoghadam S (2018) Poly(vinyl alcohol)/carbon nanotube nanocomposites. Biodegradable and biocompatible polymer composites. pp 297–315 Mallakpour S, Rashidimoghadam S (2018) Poly(vinyl alcohol)/carbon nanotube nanocomposites. Biodegradable and biocompatible polymer composites. pp 297–315
87.
Zurück zum Zitat Hassan CM, Peppas NA (2000) Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers· PVA hydrogels, anionic polymerisation nanocomposites. Springer, Berlin, Heidelberg, pp 37–65 Hassan CM, Peppas NA (2000) Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers· PVA hydrogels, anionic polymerisation nanocomposites. Springer, Berlin, Heidelberg, pp 37–65
88.
Zurück zum Zitat Singh R, Gautam S, Sharma B, Jain P, Chauhan KD (2021) Biopolymers and their classifications. Biopolymers and their industrial applications. Elsevier, Amsterdam, pp 21–44 Singh R, Gautam S, Sharma B, Jain P, Chauhan KD (2021) Biopolymers and their classifications. Biopolymers and their industrial applications. Elsevier, Amsterdam, pp 21–44
89.
Zurück zum Zitat Lv C, Liu D, Tian H, Xiang A (2020) Non-isothermal crystallization kinetics of polyvinyl alcohol plasticized with glycerol and pentaerythritol. J Polym Res 27(3):1–7 Lv C, Liu D, Tian H, Xiang A (2020) Non-isothermal crystallization kinetics of polyvinyl alcohol plasticized with glycerol and pentaerythritol. J Polym Res 27(3):1–7
90.
Zurück zum Zitat Dhall RK, Alam MS (2020) Biodegradable packaging. In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier Inc., Amsterdam, The Netherlands, pp 26–43 Dhall RK, Alam MS (2020) Biodegradable packaging. In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier Inc., Amsterdam, The Netherlands, pp 26–43
91.
Zurück zum Zitat Gaikwad KK, Lee JY, Lee YS (2016) Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. J Food Sci Technol 53(3):1608–1619PubMed Gaikwad KK, Lee JY, Lee YS (2016) Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. J Food Sci Technol 53(3):1608–1619PubMed
92.
Zurück zum Zitat Ghosh S, Ghosh S, Jana SK, Pramanik N (2020) Biomedical application of doxorubicin coated hydroxyapatite (HAp) – poly (lactide-co-glycolide) (PLGA) nancomposite for controlling osteosarcoma therapeutics. J Nanosci Nanotechnol 20:3994–4004PubMed Ghosh S, Ghosh S, Jana SK, Pramanik N (2020) Biomedical application of doxorubicin coated hydroxyapatite (HAp) – poly (lactide-co-glycolide) (PLGA) nancomposite for controlling osteosarcoma therapeutics. J Nanosci Nanotechnol 20:3994–4004PubMed
93.
Zurück zum Zitat Ghosh S, Ghosh S, Atta AK, Pramanik N (2018) A succint overview of hydroxyapatite based nanocomposite biomaterials: fabrications, physicochemical properties and some relevant biomedical applications. J Bionanosci 12:143–158 Ghosh S, Ghosh S, Atta AK, Pramanik N (2018) A succint overview of hydroxyapatite based nanocomposite biomaterials: fabrications, physicochemical properties and some relevant biomedical applications. J Bionanosci 12:143–158
94.
Zurück zum Zitat Ghosh S, Raju RSK, Ghosh N, Chaudhury K, Ghosh S, Banerjee I, Pramanik N (2019) Development and physicochemical characterization of doxorubicin-encapsulated hydroxyapatite–polyvinyl alcohol nanocomposite for repair of osteosarcoma-affected bone tissues. C R Chim 22(1):46–57 Ghosh S, Raju RSK, Ghosh N, Chaudhury K, Ghosh S, Banerjee I, Pramanik N (2019) Development and physicochemical characterization of doxorubicin-encapsulated hydroxyapatite–polyvinyl alcohol nanocomposite for repair of osteosarcoma-affected bone tissues. C R Chim 22(1):46–57
95.
Zurück zum Zitat Westedt U, Kalinowski M, Wittmar M, Merdan T, Unger F, Fuchs J, Kissel T (2007) Poly (vinyl alcohol)-graft-poly (lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J Control Release 119(1):41–51PubMed Westedt U, Kalinowski M, Wittmar M, Merdan T, Unger F, Fuchs J, Kissel T (2007) Poly (vinyl alcohol)-graft-poly (lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J Control Release 119(1):41–51PubMed
96.
Zurück zum Zitat Pramanik N, Biswas SK, Pramanik P (2008) Synthesis and characterization of hydroxyapatite/poly (vinyl alcohol phosphate) nanocomposite biomaterials. Int J Appl Ceram Technol 5(1):20–28 Pramanik N, Biswas SK, Pramanik P (2008) Synthesis and characterization of hydroxyapatite/poly (vinyl alcohol phosphate) nanocomposite biomaterials. Int J Appl Ceram Technol 5(1):20–28
97.
Zurück zum Zitat McKeen LW (2017) Environmentally friendly polymers. In: Permeability properties of plastics and elastomers. pp 305–323 McKeen LW (2017) Environmentally friendly polymers. In: Permeability properties of plastics and elastomers. pp 305–323
98.
Zurück zum Zitat Guarino V, Gentile G, Sorrentino L, Ambrosio L (2002) Polycaprolactone: synthesis, properties, and applications. Encycl Polym Sci Technol 1–36 Guarino V, Gentile G, Sorrentino L, Ambrosio L (2002) Polycaprolactone: synthesis, properties, and applications. Encycl Polym Sci Technol 1–36
99.
Zurück zum Zitat Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (ɛ-caprolactone) fibrous mats. Biomaterials 31(3):491–504PubMed Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (ɛ-caprolactone) fibrous mats. Biomaterials 31(3):491–504PubMed
100.
Zurück zum Zitat Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29(7–9):863–893PubMed Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29(7–9):863–893PubMed
101.
Zurück zum Zitat Kumari S, Kishor R (2020) Chitin and chitosan: origin, properties, and applications. Handbook of chitin and chitosan. Elsevier, Amsterdam, pp 1–33 Kumari S, Kishor R (2020) Chitin and chitosan: origin, properties, and applications. Handbook of chitin and chitosan. Elsevier, Amsterdam, pp 1–33
102.
Zurück zum Zitat Alipal J, Pu’ad NM, Lee TC, Nayan NHM, Sahari N, Basri H, Abdullah HZ (2021) A review of gelatin: properties, sources, process, applications, and commercialisation. Mater Today Proc 42:240–250 Alipal J, Pu’ad NM, Lee TC, Nayan NHM, Sahari N, Basri H, Abdullah HZ (2021) A review of gelatin: properties, sources, process, applications, and commercialisation. Mater Today Proc 42:240–250
103.
Zurück zum Zitat Egharevba HO (2019) Chemical properties of starch and its application in the food industry. Chem Prop Starch 1–26 Egharevba HO (2019) Chemical properties of starch and its application in the food industry. Chem Prop Starch 1–26
104.
Zurück zum Zitat Gupta PK, Raghunath SS, Prasanna DV, Venkat P, Shree V, Chithananthan C, Geetha K et al. (2019) An update on overview of cellulose, its structure and applications. Cellulose 846–1297 Gupta PK, Raghunath SS, Prasanna DV, Venkat P, Shree V, Chithananthan C, Geetha K et al. (2019) An update on overview of cellulose, its structure and applications. Cellulose 846–1297
105.
Zurück zum Zitat Yu O, Kim KH (2020) Lignin to materials: a focused review on recent novel lignin applications. Appl Sci 10(13):4626 Yu O, Kim KH (2020) Lignin to materials: a focused review on recent novel lignin applications. Appl Sci 10(13):4626
107.
Zurück zum Zitat Gaaz TS, Sulong AB, Akhtar MN, Kadhum AAH, Mohamad AB, Al-Amiery AA (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20(12):22833–22847PubMedPubMedCentral Gaaz TS, Sulong AB, Akhtar MN, Kadhum AAH, Mohamad AB, Al-Amiery AA (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20(12):22833–22847PubMedPubMedCentral
108.
Zurück zum Zitat Mulholland EJ, McErlean EM, Dunne N, McCarthy HO (2021) Design of a novel electrospun PVA platform for gene therapy applications using the CHAT peptide. Int J Pharm 598:120366PubMed Mulholland EJ, McErlean EM, Dunne N, McCarthy HO (2021) Design of a novel electrospun PVA platform for gene therapy applications using the CHAT peptide. Int J Pharm 598:120366PubMed
109.
Zurück zum Zitat McKeen LW (2013) Introduction to use of plastics in food packaging. Plastic films in food packaging. William Andrew Publishing, Norwich, pp 1–15 McKeen LW (2013) Introduction to use of plastics in food packaging. Plastic films in food packaging. William Andrew Publishing, Norwich, pp 1–15
110.
Zurück zum Zitat Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y (2020) Synthesis and biological application of polylactic acid. Molecules 25(21):5023PubMedPubMedCentral Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y (2020) Synthesis and biological application of polylactic acid. Molecules 25(21):5023PubMedPubMedCentral
111.
Zurück zum Zitat Sworn G, Stouby L (2021) Gellan gum. Handbook of hydrocolloids. Woodhead Publishing, Sawston, pp 855–885 Sworn G, Stouby L (2021) Gellan gum. Handbook of hydrocolloids. Woodhead Publishing, Sawston, pp 855–885
112.
Zurück zum Zitat Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohyd Polym 73(4):515–531 Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohyd Polym 73(4):515–531
113.
Zurück zum Zitat Leathers TD (2005) Dextran. In: Polysaccharides and polyamides in the food industry: properties, production, and patents. pp 233–255 Leathers TD (2005) Dextran. In: Polysaccharides and polyamides in the food industry: properties, production, and patents. pp 233–255
114.
Zurück zum Zitat Chaudhari V, Buttar HS, Bagwe-Parab S, Tuli HS, Vora A, Kaur G (2021) Therapeutic and industrial applications of curdlan with overview on its recent patents. Front Nutr 8:646988PubMedPubMedCentral Chaudhari V, Buttar HS, Bagwe-Parab S, Tuli HS, Vora A, Kaur G (2021) Therapeutic and industrial applications of curdlan with overview on its recent patents. Front Nutr 8:646988PubMedPubMedCentral
115.
Zurück zum Zitat Schmid J, Meyer V, Sieber V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91(4):937–947PubMed Schmid J, Meyer V, Sieber V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91(4):937–947PubMed
116.
Zurück zum Zitat Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392PubMed Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392PubMed
117.
Zurück zum Zitat Lopes MS, Jardini AL, Maciel Filho RJPE (2012) Poly (lactic acid) production for tissue engineering applications. Procedia Eng 42:1402–1413 Lopes MS, Jardini AL, Maciel Filho RJPE (2012) Poly (lactic acid) production for tissue engineering applications. Procedia Eng 42:1402–1413
119.
Zurück zum Zitat Ahmed J, Varshney SK (2011) Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop 14(1):37–58 Ahmed J, Varshney SK (2011) Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop 14(1):37–58
120.
Zurück zum Zitat Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: An overview. Prog Polym Sci 32(4):455–482 Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: An overview. Prog Polym Sci 32(4):455–482
121.
Zurück zum Zitat Haers PE, Suuronen R, Lindqvist C, Sailer H (1998) Biodegradable polylactide plates and screws in orthognathic surgery. J Cranio-maxillofacial Surg 26(2):87–91 Haers PE, Suuronen R, Lindqvist C, Sailer H (1998) Biodegradable polylactide plates and screws in orthognathic surgery. J Cranio-maxillofacial Surg 26(2):87–91
122.
Zurück zum Zitat Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626PubMed Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626PubMed
123.
Zurück zum Zitat Cheng L, Sun X, Zhao X, Wang L, Yu J, Pan G, Cui W et al (2016) Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials 83:169–181PubMed Cheng L, Sun X, Zhao X, Wang L, Yu J, Pan G, Cui W et al (2016) Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials 83:169–181PubMed
124.
Zurück zum Zitat Niu K, Yao Y, Xiu M, Guo C, Ge Y, Wang J (2018) Controlled drug delivery by polylactide stereocomplex micelle for cervical cancer chemotherapy. Front Pharmacol 9:930PubMedPubMedCentral Niu K, Yao Y, Xiu M, Guo C, Ge Y, Wang J (2018) Controlled drug delivery by polylactide stereocomplex micelle for cervical cancer chemotherapy. Front Pharmacol 9:930PubMedPubMedCentral
125.
Zurück zum Zitat Clarke AL (2020) 3D printed circuit splitter and flow restriction devices for multiple patient lung ventilation using one anaesthesia workstation or ventilator. Anaesthesia 75(6):819–820PubMed Clarke AL (2020) 3D printed circuit splitter and flow restriction devices for multiple patient lung ventilation using one anaesthesia workstation or ventilator. Anaesthesia 75(6):819–820PubMed
126.
Zurück zum Zitat DeStefano V, Khan S, Tabada A (2020) Applications of PLA in modern medicine. Eng Regen 1:76–87 DeStefano V, Khan S, Tabada A (2020) Applications of PLA in modern medicine. Eng Regen 1:76–87
127.
Zurück zum Zitat Morales ME, Ruiz MA (2016) Microencapsulation of probiotic cells: applications in nutraceutic and food industry. Nutraceuticals 1:627–668 Morales ME, Ruiz MA (2016) Microencapsulation of probiotic cells: applications in nutraceutic and food industry. Nutraceuticals 1:627–668
128.
Zurück zum Zitat Jindal N, Khattar JS (2018) Microbial polysaccharides in food industry. Biopolymers for food design. Academic Press, Cambridge, pp 95–123 Jindal N, Khattar JS (2018) Microbial polysaccharides in food industry. Biopolymers for food design. Academic Press, Cambridge, pp 95–123
129.
Zurück zum Zitat Fallourd MJ, Viscione L (2009) Ingredient selection for stabilisation and texture optimisation of functional beverages and the inclusion of dietary fibre. Functional and speciality beverage technology. Woodhead Publishing, Sawston, pp 3–38 Fallourd MJ, Viscione L (2009) Ingredient selection for stabilisation and texture optimisation of functional beverages and the inclusion of dietary fibre. Functional and speciality beverage technology. Woodhead Publishing, Sawston, pp 3–38
130.
Zurück zum Zitat Liu S, Chen X, Zhang Y (2020) Hydrogels and hydrogel composites for 3D and 4D printing applications. 3D and 4d printing of polymer nanocomposite materials. Elsevier, Amsterdam, pp 427–465 Liu S, Chen X, Zhang Y (2020) Hydrogels and hydrogel composites for 3D and 4D printing applications. 3D and 4d printing of polymer nanocomposite materials. Elsevier, Amsterdam, pp 427–465
131.
Zurück zum Zitat Nayak AK, Hasnain MS, Pal K, Banerjee I, Pal D (2020) Gum-based hydrogels in drug delivery. Biopolymer-based formulations. Elsevier, Amsterdam, pp 605–645 Nayak AK, Hasnain MS, Pal K, Banerjee I, Pal D (2020) Gum-based hydrogels in drug delivery. Biopolymer-based formulations. Elsevier, Amsterdam, pp 605–645
132.
Zurück zum Zitat Smith AM, Moxon S, Morris GA (2016) Biopolymers as wound healing materials. Wound healing biomaterials. Woodhead Publishing, Sawston, pp 261–287 Smith AM, Moxon S, Morris GA (2016) Biopolymers as wound healing materials. Wound healing biomaterials. Woodhead Publishing, Sawston, pp 261–287
133.
Zurück zum Zitat Cencetti C, Bellini D, Pavesio A, Senigaglia D, Passariello C, Virga A, Matricardi P (2012) Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax. Carbohyd Polym 90(3):1362–1370 Cencetti C, Bellini D, Pavesio A, Senigaglia D, Passariello C, Virga A, Matricardi P (2012) Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax. Carbohyd Polym 90(3):1362–1370
134.
Zurück zum Zitat Kırtel O, Avşar G, Erkorkmaz BA, Öner ET (2017) Microbial polysaccharides as food ingredients. Microbial production of food ingredients and additives. Academic Press, Cambridge, pp 347–383 Kırtel O, Avşar G, Erkorkmaz BA, Öner ET (2017) Microbial polysaccharides as food ingredients. Microbial production of food ingredients and additives. Academic Press, Cambridge, pp 347–383
135.
Zurück zum Zitat Leathers TD (1993) Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. FEMS Microbiol Lett 110(2):217–221 Leathers TD (1993) Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. FEMS Microbiol Lett 110(2):217–221
136.
Zurück zum Zitat Oğuzhan P, Yangılar F (2013) Pullulan: production and usage in food ındustry. Afr J Food Sci Technol 4(3):2141–5455 Oğuzhan P, Yangılar F (2013) Pullulan: production and usage in food ındustry. Afr J Food Sci Technol 4(3):2141–5455
137.
Zurück zum Zitat Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29–44PubMed Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29–44PubMed
138.
Zurück zum Zitat LeDuy A, Choplin L, Zajic JE, Luong JH (2002) Pullulan: properties, synthesis, and applications. Encycl Polym Sci Technol 1–14 LeDuy A, Choplin L, Zajic JE, Luong JH (2002) Pullulan: properties, synthesis, and applications. Encycl Polym Sci Technol 1–14
139.
Zurück zum Zitat Na K, Lee TB, Park KH, Shin EK, Lee YB, Choi HK (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18(2):165–173PubMed Na K, Lee TB, Park KH, Shin EK, Lee YB, Choi HK (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18(2):165–173PubMed
140.
Zurück zum Zitat Katagiri K, Ohta K, Koumoto K, Kurosu K, Sasaki Y, Akiyoshi K (2013) Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels. Colloid Polym Sci 291(6):1375–1380 Katagiri K, Ohta K, Koumoto K, Kurosu K, Sasaki Y, Akiyoshi K (2013) Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels. Colloid Polym Sci 291(6):1375–1380
141.
Zurück zum Zitat Trinetta V, Cutter CN (2016) Pullulan: a suitable biopolymer for antimicrobial food packaging applications. Antimicrobial food packaging. Academic Press, Cambridge, pp 385–397 Trinetta V, Cutter CN (2016) Pullulan: a suitable biopolymer for antimicrobial food packaging applications. Antimicrobial food packaging. Academic Press, Cambridge, pp 385–397
142.
Zurück zum Zitat Zarrintaj P, Saeb MR, Jafari SH, Mozafari M (2020) Application of compatibilized polymer blends in biomedical fields. Compatibilization of polymer blends. Elsevier, Amsterdam, pp 511–537 Zarrintaj P, Saeb MR, Jafari SH, Mozafari M (2020) Application of compatibilized polymer blends in biomedical fields. Compatibilization of polymer blends. Elsevier, Amsterdam, pp 511–537
143.
Zurück zum Zitat Sun G, Mao JJ (2012) Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine 7(11):1771–1784PubMed Sun G, Mao JJ (2012) Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine 7(11):1771–1784PubMed
144.
Zurück zum Zitat Robless P, Okonko D, Mikhailidis DP, Stansby G (2004) Dextran 40 reduces in vitro platelet aggregation in peripheral arterial disease. Platelets 15(4):215–222PubMed Robless P, Okonko D, Mikhailidis DP, Stansby G (2004) Dextran 40 reduces in vitro platelet aggregation in peripheral arterial disease. Platelets 15(4):215–222PubMed
145.
Zurück zum Zitat Dubniks M, Persson J, Grände PO (2009) Comparison of the plasma volume-expanding effects of 6% dextran 70, 5% albumin, and 6% HES 130/0.4 after hemorrhage in the guinea pig. J Trauma Acute Care Surg 67(6):1200–1204 Dubniks M, Persson J, Grände PO (2009) Comparison of the plasma volume-expanding effects of 6% dextran 70, 5% albumin, and 6% HES 130/0.4 after hemorrhage in the guinea pig. J Trauma Acute Care Surg 67(6):1200–1204
146.
Zurück zum Zitat Tsintou M, Wróbel PP, Dalamagkas K (2020) Central nervous system responses to biomaterials. Handbook of biomaterials biocompatibility. Woodhead Publishing, Sawston, pp 507–555 Tsintou M, Wróbel PP, Dalamagkas K (2020) Central nervous system responses to biomaterials. Handbook of biomaterials biocompatibility. Woodhead Publishing, Sawston, pp 507–555
147.
Zurück zum Zitat Zoratto N, Matricardi P (2018) Semi-IPNs and IPN-based hydrogels. Polym Gels 91–124 Zoratto N, Matricardi P (2018) Semi-IPNs and IPN-based hydrogels. Polym Gels 91–124
148.
Zurück zum Zitat Haq F, Yu H, Wang LI, Teng L, Haroon M, Khan RU, Nazir A (2019) Advances in chemical modifications of starches and their applications. Carbohyd Res 476:12–35 Haq F, Yu H, Wang LI, Teng L, Haroon M, Khan RU, Nazir A (2019) Advances in chemical modifications of starches and their applications. Carbohyd Res 476:12–35
149.
Zurück zum Zitat Cichosz S, Masek A (2019) Cellulose fibers hydrophobization via a hybrid chemical modification. Polymers 11(7):1174PubMedPubMedCentral Cichosz S, Masek A (2019) Cellulose fibers hydrophobization via a hybrid chemical modification. Polymers 11(7):1174PubMedPubMedCentral
150.
Zurück zum Zitat Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68(6):1013–1051 Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68(6):1013–1051
151.
Zurück zum Zitat Kumar MR, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084PubMed Kumar MR, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084PubMed
152.
Zurück zum Zitat Huang T, Tu ZC, Shangguan X, Sha X, Wang H, Zhang L, Bansal N (2019) Fish gelatin modifications: a comprehensive review. Trends Food Sci Technol 86:260–269 Huang T, Tu ZC, Shangguan X, Sha X, Wang H, Zhang L, Bansal N (2019) Fish gelatin modifications: a comprehensive review. Trends Food Sci Technol 86:260–269
153.
Zurück zum Zitat Van Hoorick J, Ovsianikov A, Dubruel P, Van Vlierberghe S (2018) Photo-crosslinkable gelatin hydrogels: versatile materials for high-resolution additive manufacturing. Mater Matters 13(3):75–82 Van Hoorick J, Ovsianikov A, Dubruel P, Van Vlierberghe S (2018) Photo-crosslinkable gelatin hydrogels: versatile materials for high-resolution additive manufacturing. Mater Matters 13(3):75–82
154.
Zurück zum Zitat Jeong YI, Kim DG, Kang DH (2013) Synthesis of dextran/methoxy poly (ethylene glycol) block copolymer. J Chem 2013:1–7 Jeong YI, Kim DG, Kang DH (2013) Synthesis of dextran/methoxy poly (ethylene glycol) block copolymer. J Chem 2013:1–7
155.
Zurück zum Zitat Turánek J, Mašek J, Raška M, Ledvina M, Paulovičová E, Hubatka F, Kotouček J (2019) Modification of liposomal surface by polysaccharides: preparation, characterization, and application for drug targeting. Functional polysaccharides for biomedical applications. Woodhead Publishing, Sawston, pp 433–467 Turánek J, Mašek J, Raška M, Ledvina M, Paulovičová E, Hubatka F, Kotouček J (2019) Modification of liposomal surface by polysaccharides: preparation, characterization, and application for drug targeting. Functional polysaccharides for biomedical applications. Woodhead Publishing, Sawston, pp 433–467
156.
Zurück zum Zitat Zhang H, Nishinari K, Foster TJ, Williams MA, Norton IT (2001) A study of the gelation of the polysaccharide Curdlan. Studies in surface science and catalysis. Elsevier, Amsterdam, pp 65–68 Zhang H, Nishinari K, Foster TJ, Williams MA, Norton IT (2001) A study of the gelation of the polysaccharide Curdlan. Studies in surface science and catalysis. Elsevier, Amsterdam, pp 65–68
157.
Zurück zum Zitat Bailey SA, Bryant RS, Duncan KE (2000) Design of a novel alkaliphillic bacterial system for triggering biopolymer gels. J Ind Microbiol Biotechnol 24:389–395 Bailey SA, Bryant RS, Duncan KE (2000) Design of a novel alkaliphillic bacterial system for triggering biopolymer gels. J Ind Microbiol Biotechnol 24:389–395
158.
Zurück zum Zitat Gupta J, Rathour R, Medhi K, Tyagi B, Thakur IS (2020) Microbial-derived natural bioproducts for a sustainable environment: a bioprospective for waste to wealth. Refining biomass residues for sustainable energy and bioproducts. Academic Press, Cambridge, pp 51–85 Gupta J, Rathour R, Medhi K, Tyagi B, Thakur IS (2020) Microbial-derived natural bioproducts for a sustainable environment: a bioprospective for waste to wealth. Refining biomass residues for sustainable energy and bioproducts. Academic Press, Cambridge, pp 51–85
159.
Zurück zum Zitat Yuba E (2019) Stimuli-responsive polymer-modified liposomes and their application to DDS. Stimuli Responsive polymeric nanocarriers for drug delivery applications. Woodhead Publishing, Sawston, pp 305–319 Yuba E (2019) Stimuli-responsive polymer-modified liposomes and their application to DDS. Stimuli Responsive polymeric nanocarriers for drug delivery applications. Woodhead Publishing, Sawston, pp 305–319
160.
Zurück zum Zitat Yuba E, Yamaguchi A, Yoshizaki Y, Harada A, Kono K (2017) Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 120:32–45PubMed Yuba E, Yamaguchi A, Yoshizaki Y, Harada A, Kono K (2017) Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 120:32–45PubMed
161.
Zurück zum Zitat El Asjadi S, Nederpel QA, Cotiuga IM, Picken SJ, Besseling NAM, Mendes E, Lommerts BJ (2018) Biopolymer scleroglucan as an emulsion stabilizer. Colloids Surf A 546:326–333 El Asjadi S, Nederpel QA, Cotiuga IM, Picken SJ, Besseling NAM, Mendes E, Lommerts BJ (2018) Biopolymer scleroglucan as an emulsion stabilizer. Colloids Surf A 546:326–333
162.
Zurück zum Zitat Madhav H, Singh N, Jaiswar G (2019) Thermoset, bioactive, metal–polymer composites for medical applications. Materials for biomedical engineering. Elsevier, Amsterdam, pp 105–143 Madhav H, Singh N, Jaiswar G (2019) Thermoset, bioactive, metal–polymer composites for medical applications. Materials for biomedical engineering. Elsevier, Amsterdam, pp 105–143
163.
Zurück zum Zitat Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2014) Introduction to spectroscopy. Cengage Learning, Boston Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2014) Introduction to spectroscopy. Cengage Learning, Boston
164.
Zurück zum Zitat Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E (1996) Anionic biopolymers as blood flow sensors. Biosens Bioelectron 11(3):281–294PubMed Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E (1996) Anionic biopolymers as blood flow sensors. Biosens Bioelectron 11(3):281–294PubMed
165.
Zurück zum Zitat Scott WR, Baek SB, Jung D, Hancock RE, Straus SK (2007) NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles. Biochim Biophys Acta BBA-Biomembr 1768(12):3116–3126 Scott WR, Baek SB, Jung D, Hancock RE, Straus SK (2007) NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles. Biochim Biophys Acta BBA-Biomembr 1768(12):3116–3126
166.
Zurück zum Zitat Liu S, Zhu Y, Meng W, He Z, Feng W, Zhang C, Giesy JP (2016) Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: insights from solid-state 13C NMR and solution 31P NMR spectroscopy. Sci Total Environ 543:746–756PubMed Liu S, Zhu Y, Meng W, He Z, Feng W, Zhang C, Giesy JP (2016) Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: insights from solid-state 13C NMR and solution 31P NMR spectroscopy. Sci Total Environ 543:746–756PubMed
167.
Zurück zum Zitat Brown SP (2012) Applications of high-resolution 1H solid-state NMR. Solid State Nucl Magn Reson 41:1–27PubMed Brown SP (2012) Applications of high-resolution 1H solid-state NMR. Solid State Nucl Magn Reson 41:1–27PubMed
168.
Zurück zum Zitat Vishwakarma V, Uthaman S (2020) Environmental impact of sustainable green concrete. Smart nanoconcretes and cement-based materials. Elsevier, Amsterdam, pp 241–255 Vishwakarma V, Uthaman S (2020) Environmental impact of sustainable green concrete. Smart nanoconcretes and cement-based materials. Elsevier, Amsterdam, pp 241–255
169.
Zurück zum Zitat Wang GC (2016) The utilization of slag in civil infrastructure construction. Woodhead Publishing, Sawston Wang GC (2016) The utilization of slag in civil infrastructure construction. Woodhead Publishing, Sawston
170.
Zurück zum Zitat Hámos LV (1939) Formation of true x-ray images by reflection on crystal mirrors. Z Krist Cryst Mater 101(1–6):17–29 Hámos LV (1939) Formation of true x-ray images by reflection on crystal mirrors. Z Krist Cryst Mater 101(1–6):17–29
171.
Zurück zum Zitat Tomoda BT, Yassue-Cordeiro PH, Ernesto JV, Lopes PS, Péres LO, da Silva CF, de Moraes MA (2020) Characterization of biopolymer membranes and films: Physicochemical, mechanical, barrier, and biological properties. biopolymer membranes and films. Elsevier, Amsterdam, pp 67–95 Tomoda BT, Yassue-Cordeiro PH, Ernesto JV, Lopes PS, Péres LO, da Silva CF, de Moraes MA (2020) Characterization of biopolymer membranes and films: Physicochemical, mechanical, barrier, and biological properties. biopolymer membranes and films. Elsevier, Amsterdam, pp 67–95
172.
Zurück zum Zitat Seidel A (ed) (2008) Characterization analysis of polymers. Wiley-Interscience, Hoboken Seidel A (ed) (2008) Characterization analysis of polymers. Wiley-Interscience, Hoboken
173.
Zurück zum Zitat Murtey MD, Ramasamy P (2016) Sample preparations for scanning electron microscopy–life sciences. In: Modern electron microscopy in physical and life sciences. pp 161–185 Murtey MD, Ramasamy P (2016) Sample preparations for scanning electron microscopy–life sciences. In: Modern electron microscopy in physical and life sciences. pp 161–185
174.
Zurück zum Zitat Venkatesan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525PubMed Venkatesan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525PubMed
175.
Zurück zum Zitat Mandal BB, Mann JK, Kundu SC (2009) Silk fibroin/gelatin multilayered films as a model system for controlled drug release. Eur J Pharm Sci 37(2):160–171PubMed Mandal BB, Mann JK, Kundu SC (2009) Silk fibroin/gelatin multilayered films as a model system for controlled drug release. Eur J Pharm Sci 37(2):160–171PubMed
176.
Zurück zum Zitat Ghosh S, Ray A (2015) Spontaneous vesicle based excipient formation in mixtures of sodium N-(n-alkanoyl)-L-alaninate and N-cetylpyridinium chloride: Effect of hydrocarbon chain length. Ind Eng Chem Res 54:1953–1961 Ghosh S, Ray A (2015) Spontaneous vesicle based excipient formation in mixtures of sodium N-(n-alkanoyl)-L-alaninate and N-cetylpyridinium chloride: Effect of hydrocarbon chain length. Ind Eng Chem Res 54:1953–1961
177.
Zurück zum Zitat Ghosh S, Ray A, Pramanik N, Ambade B (2016) Can a catanionic surfactant mixture act as a drug delivery vehicle? C R Chim 19:951–954 Ghosh S, Ray A, Pramanik N, Ambade B (2016) Can a catanionic surfactant mixture act as a drug delivery vehicle? C R Chim 19:951–954
178.
Zurück zum Zitat Denavi G, Tapia-Blácido DR, Añón MC, Sobral PJA, Mauri AN, Menegalli FC (2009) Effects of drying conditions on some physical properties of soy protein films. J Food Eng 90(3):341–349 Denavi G, Tapia-Blácido DR, Añón MC, Sobral PJA, Mauri AN, Menegalli FC (2009) Effects of drying conditions on some physical properties of soy protein films. J Food Eng 90(3):341–349
179.
Zurück zum Zitat Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin–microcrystalline cellulose composite films. J Appl Polym Sci 86(13):3425–3429 Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin–microcrystalline cellulose composite films. J Appl Polym Sci 86(13):3425–3429
180.
Zurück zum Zitat Theophile T (Ed.). (2015) Infrared spectroscopy: anharmonicity of Biomolecules, Crosslinking of Biopolymers, Food Quality and Medical Applications. BoD–Books on Demand. Theophile T (Ed.). (2015) Infrared spectroscopy: anharmonicity of Biomolecules, Crosslinking of Biopolymers, Food Quality and Medical Applications. BoD–Books on Demand.
181.
Zurück zum Zitat Bista RK, Bruch RF, Covington AM (2011) Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers. Spectrochim Acta Part A Mol Biomol Spectrosc 81(1):583–589 Bista RK, Bruch RF, Covington AM (2011) Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers. Spectrochim Acta Part A Mol Biomol Spectrosc 81(1):583–589
182.
Zurück zum Zitat Liu Y, Thibodeaux D, Gamble G (2012) Characterization of attenuated total reflection infrared spectral intensity variations of immature and mature cotton fibers by two-dimensional correlation analysis. Appl Spectrosc 66(2):198–207PubMed Liu Y, Thibodeaux D, Gamble G (2012) Characterization of attenuated total reflection infrared spectral intensity variations of immature and mature cotton fibers by two-dimensional correlation analysis. Appl Spectrosc 66(2):198–207PubMed
183.
Zurück zum Zitat Teixeira EDM, De Campos A, Marconcini JM, Bondancia TJ, Wood D, Klamczynski A, Glenn GM (2014) Starch/fiber/poly (lactic acid) foam and compressed foam composites. RSC Adv 4(13):6616–6623 Teixeira EDM, De Campos A, Marconcini JM, Bondancia TJ, Wood D, Klamczynski A, Glenn GM (2014) Starch/fiber/poly (lactic acid) foam and compressed foam composites. RSC Adv 4(13):6616–6623
184.
Zurück zum Zitat Riaz U, Ashraf SM (2014) Characterization of polymer blends with FTIR spectroscopy. Charact Polym Blends 625–678 Riaz U, Ashraf SM (2014) Characterization of polymer blends with FTIR spectroscopy. Charact Polym Blends 625–678
185.
Zurück zum Zitat De Yao K, Liu J, Cheng GX, Lu XD, Tu HL, Da Silva JAL (1996) Swelling behavior of pectin/chitosan complex films. J Appl Polym Sci 60(2):279–283 De Yao K, Liu J, Cheng GX, Lu XD, Tu HL, Da Silva JAL (1996) Swelling behavior of pectin/chitosan complex films. J Appl Polym Sci 60(2):279–283
186.
Zurück zum Zitat Bierhalz ACK, da Silva MA, Kieckbusch TG (2012) Natamycin release from alginate/pectin films for food packaging applications. J Food Eng 110(1):18–25 Bierhalz ACK, da Silva MA, Kieckbusch TG (2012) Natamycin release from alginate/pectin films for food packaging applications. J Food Eng 110(1):18–25
187.
Zurück zum Zitat Silva NH, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Freire CS et al (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohyd Polym 106:264–269 Silva NH, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Freire CS et al (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohyd Polym 106:264–269
188.
Zurück zum Zitat Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH (1987) The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 8(5):367–371PubMed Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH (1987) The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 8(5):367–371PubMed
189.
Zurück zum Zitat Göpferich A (1996) Mechanisms of polymer degradation and erosion. The biomaterials: silver jubilee compendium. pp 117–128 Göpferich A (1996) Mechanisms of polymer degradation and erosion. The biomaterials: silver jubilee compendium. pp 117–128
190.
Zurück zum Zitat Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P (2012) Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. Sci World J Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P (2012) Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. Sci World J
191.
Zurück zum Zitat Accinelli C, Saccà ML, Mencarelli M, Vicari A (2012) Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere 89(2):136–143PubMed Accinelli C, Saccà ML, Mencarelli M, Vicari A (2012) Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere 89(2):136–143PubMed
192.
Zurück zum Zitat Pereira RF, Bártolo PJ (2013) Degradation behavior of biopolymer-based membranes for skin tissue regeneration. Procedia Eng 59:285–291 Pereira RF, Bártolo PJ (2013) Degradation behavior of biopolymer-based membranes for skin tissue regeneration. Procedia Eng 59:285–291
193.
Zurück zum Zitat Tolosa L, Donato MT, Gómez-Lechón MJ (2015) General cytotoxicity assessment by means of the MTT assay. Protocols in in vitro hepatocyte research. Humana Press, New York, NY, pp 333–348 Tolosa L, Donato MT, Gómez-Lechón MJ (2015) General cytotoxicity assessment by means of the MTT assay. Protocols in in vitro hepatocyte research. Humana Press, New York, NY, pp 333–348
194.
Zurück zum Zitat Adler S, Basketter D, Creton S, Pelkonen O, Van Benthem J, Zuang V, Zaldivar JM (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85(5):367–485PubMed Adler S, Basketter D, Creton S, Pelkonen O, Van Benthem J, Zuang V, Zaldivar JM (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85(5):367–485PubMed
195.
Zurück zum Zitat Kleinstreuer N, Strickland J, Allen D, Casey W (2014) Predicting skin sensitization using Tox Cast assays. In: Abstract 1062C presented at the society of toxicology 53rd annual meeting. Kleinstreuer N, Strickland J, Allen D, Casey W (2014) Predicting skin sensitization using Tox Cast assays. In: Abstract 1062C presented at the society of toxicology 53rd annual meeting.
196.
Zurück zum Zitat Wayne PA (2011) Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing Wayne PA (2011) Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing
197.
Zurück zum Zitat Loke WK, Lau SK, Yong LL, Khor E, Sum CK (2000) Wound dressing with sustained anti-microbial capability. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 53(1):8–17 Loke WK, Lau SK, Yong LL, Khor E, Sum CK (2000) Wound dressing with sustained anti-microbial capability. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 53(1):8–17
198.
Zurück zum Zitat Mamba FB, Mbuli BS, Ramontja J (2021) Recent advances in biopolymeric membranes towards the removal of emerging organic pollutants from water. Membranes 11(11):798PubMedPubMedCentral Mamba FB, Mbuli BS, Ramontja J (2021) Recent advances in biopolymeric membranes towards the removal of emerging organic pollutants from water. Membranes 11(11):798PubMedPubMedCentral
199.
Zurück zum Zitat Pandiarajan A, Kamaraj R, Vasudevan S, Vasudevan S (2018) OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Biores Technol 261:329–341 Pandiarajan A, Kamaraj R, Vasudevan S, Vasudevan S (2018) OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Biores Technol 261:329–341
200.
Zurück zum Zitat Maleš L, Fakin D, Bračič M, Gorgieva S (2020) Efficiency of differently processed membranes based on cellulose as cationic dye adsorbents. Nanomaterials 10(4):642PubMedPubMedCentral Maleš L, Fakin D, Bračič M, Gorgieva S (2020) Efficiency of differently processed membranes based on cellulose as cationic dye adsorbents. Nanomaterials 10(4):642PubMedPubMedCentral
201.
Zurück zum Zitat Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106PubMed Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106PubMed
202.
Zurück zum Zitat Thangaraju E, Muthuraj R (2020) Biopolymer-based nanofibrous membrane for water purification treatment. Bioprocess engineering for bioremediation. Springer, Cham, pp 225–240 Thangaraju E, Muthuraj R (2020) Biopolymer-based nanofibrous membrane for water purification treatment. Bioprocess engineering for bioremediation. Springer, Cham, pp 225–240
203.
Zurück zum Zitat Jiang X, Li Y, Tang X, Jiang J, He Q, Xiong Z, Zheng H (2021) Biopolymer-based flocculants: a review of recent technologies. Environ Sci Pollut Res 28(34):46934–46963 Jiang X, Li Y, Tang X, Jiang J, He Q, Xiong Z, Zheng H (2021) Biopolymer-based flocculants: a review of recent technologies. Environ Sci Pollut Res 28(34):46934–46963
204.
Zurück zum Zitat Mahmood H, Moniruzzaman M (2019) Recent advances of using ionic liquids for biopolymer extraction and processing. Biotechnol J 14(12):1900072 Mahmood H, Moniruzzaman M (2019) Recent advances of using ionic liquids for biopolymer extraction and processing. Biotechnol J 14(12):1900072
205.
Zurück zum Zitat Roselet F, Vandamme D, Roselet M, Muylaert K, Abreu PC (2015) Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Res 10:183–188 Roselet F, Vandamme D, Roselet M, Muylaert K, Abreu PC (2015) Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Res 10:183–188
206.
Zurück zum Zitat Biswal T (2021) Biopolymers for tissue engineering applications: a review. Mater Today Proc 41:397–402 Biswal T (2021) Biopolymers for tissue engineering applications: a review. Mater Today Proc 41:397–402
207.
Zurück zum Zitat Ozsvar J, Mithieux SM, Wang R, Weiss AS (2015) Elastin-based biomaterials and mesenchymal stem cells. Biomater Sci 3(6):800–809PubMedPubMedCentral Ozsvar J, Mithieux SM, Wang R, Weiss AS (2015) Elastin-based biomaterials and mesenchymal stem cells. Biomater Sci 3(6):800–809PubMedPubMedCentral
208.
Zurück zum Zitat Pérez-Pedroza R, Ávila-Ramírez A, Khan Z, Moretti M, Hauser CA (2021) Supramolecular biopolymers for tissue engineering. Adv Polym Technol 2021(2):1–23 Pérez-Pedroza R, Ávila-Ramírez A, Khan Z, Moretti M, Hauser CA (2021) Supramolecular biopolymers for tissue engineering. Adv Polym Technol 2021(2):1–23
209.
Zurück zum Zitat Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D (2020) Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J Am Chem Soc 142(7):3422–3429PubMed Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D (2020) Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J Am Chem Soc 142(7):3422–3429PubMed
210.
Zurück zum Zitat Biswas MC, Jony B, Nandy PK, Chowdhury RA, Halder S, Kumar D, Imam MA et al. (2021) Recent advancement of biopolymers and their potential biomedical applications. J Polym Environ 1–24 Biswas MC, Jony B, Nandy PK, Chowdhury RA, Halder S, Kumar D, Imam MA et al. (2021) Recent advancement of biopolymers and their potential biomedical applications. J Polym Environ 1–24
211.
Zurück zum Zitat Plackett D, Letchford K, Jackson J, Burt H (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118 Plackett D, Letchford K, Jackson J, Burt H (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118
212.
Zurück zum Zitat Prabaharan M, Mano JF (2004) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12(1):41–57 Prabaharan M, Mano JF (2004) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12(1):41–57
213.
Zurück zum Zitat Munkvold GP (2009) Seed pathology progress in academia and industry. Annu Rev Phytopathol 47:285–311PubMed Munkvold GP (2009) Seed pathology progress in academia and industry. Annu Rev Phytopathol 47:285–311PubMed
214.
215.
Zurück zum Zitat Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C Polym Rev 44(3):231–274 Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C Polym Rev 44(3):231–274
216.
Zurück zum Zitat Akelah A (1990) Applications of functionalized polymers in agriculture. J Islam Acad Sci 3(1):49–61 Akelah A (1990) Applications of functionalized polymers in agriculture. J Islam Acad Sci 3(1):49–61
217.
Zurück zum Zitat Tomadoni B, Casalongué C, Alvarez VA (2019) Biopolymer-based hydrogels for agriculture applications: swelling behavior and slow release of agrochemicals. Polymers for Agri-food applications. Springer, Cham, pp 99–125 Tomadoni B, Casalongué C, Alvarez VA (2019) Biopolymer-based hydrogels for agriculture applications: swelling behavior and slow release of agrochemicals. Polymers for Agri-food applications. Springer, Cham, pp 99–125
218.
Zurück zum Zitat Torres‐Giner S, Figueroa‐Lopez KJ, Melendez‐Rodriguez B, Prieto C, Pardo‐Figuerez M, Lagaron JM (2021) Emerging trends in biopolymers for food packaging. Sustain Food Pack Technol 1–33 Torres‐Giner S, Figueroa‐Lopez KJ, Melendez‐Rodriguez B, Prieto C, Pardo‐Figuerez M, Lagaron JM (2021) Emerging trends in biopolymers for food packaging. Sustain Food Pack Technol 1–33
219.
Zurück zum Zitat Mohanty AK, Misra MA, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24 Mohanty AK, Misra MA, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24
220.
221.
Zurück zum Zitat Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion 159(1–2):111–119 Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion 159(1–2):111–119
222.
Zurück zum Zitat Winie T, Arof AK (2016) Biopolymer electrolytes for energy devices. Nanostruct Polym Membr Appl 2:311–356 Winie T, Arof AK (2016) Biopolymer electrolytes for energy devices. Nanostruct Polym Membr Appl 2:311–356
223.
Zurück zum Zitat Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69(7):807–826 Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69(7):807–826
224.
Zurück zum Zitat Singh R, Bhattacharya B, Rhee HW, Singh PK (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrog Energy 40(30):9365–9372 Singh R, Bhattacharya B, Rhee HW, Singh PK (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrog Energy 40(30):9365–9372
225.
Zurück zum Zitat Haque S, Shah MS, Rahman M, Mohiuddin M (2017) Biopolymer composites in light emitting diodes. Biopolym Compos Electron 277–310 Haque S, Shah MS, Rahman M, Mohiuddin M (2017) Biopolymer composites in light emitting diodes. Biopolym Compos Electron 277–310
226.
Zurück zum Zitat Rendón-Villalobos R, Ortíz-Sánchez A, Tovar-Sánchez E, Flores-Huicochea E (2016) The role of biopolymers in obtaining environmentally friendly materials. Compos Renew Sustain Mater 151–159 Rendón-Villalobos R, Ortíz-Sánchez A, Tovar-Sánchez E, Flores-Huicochea E (2016) The role of biopolymers in obtaining environmentally friendly materials. Compos Renew Sustain Mater 151–159
227.
Zurück zum Zitat Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782 Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782
228.
Zurück zum Zitat Pei Z, Ding L, Lu M, Fan Z, Weng S, Hu J, Liu P (2014) Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability. J Phys Chem C 118(18):9570–9577 Pei Z, Ding L, Lu M, Fan Z, Weng S, Hu J, Liu P (2014) Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability. J Phys Chem C 118(18):9570–9577
229.
Zurück zum Zitat Soldo A, Miletić M, Auad ML (2020) Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci Rep 10(1):1–13 Soldo A, Miletić M, Auad ML (2020) Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci Rep 10(1):1–13
230.
Zurück zum Zitat Liu X, Shuai HL, Liu YJ, Huang KJ (2016) An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-walled carbon nanotube composites and hybridization chain reaction amplification. Sens Actuators B Chem 235:603–613 Liu X, Shuai HL, Liu YJ, Huang KJ (2016) An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-walled carbon nanotube composites and hybridization chain reaction amplification. Sens Actuators B Chem 235:603–613
231.
Zurück zum Zitat Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly (lactide-co-glycolide) fiber: an overview. J Eng Fibers Fabr 9(1):155892501400900100 Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly (lactide-co-glycolide) fiber: an overview. J Eng Fibers Fabr 9(1):155892501400900100
232.
Zurück zum Zitat Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013) Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 34:549–554 Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013) Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 34:549–554
233.
Zurück zum Zitat Biswas MC, Jony B, Nandy PK, Chowdhury RA, Halder S, Kumar D, Imam MA (2021) Recent advancement of biopolymers and their potential biomedical applications. J Polym Environ 1–24 Biswas MC, Jony B, Nandy PK, Chowdhury RA, Halder S, Kumar D, Imam MA (2021) Recent advancement of biopolymers and their potential biomedical applications. J Polym Environ 1–24
Metadaten
Titel
A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers
verfasst von
Abinash Das
Togam Ringu
Sampad Ghosh
Nabakumar Pramanik
Publikationsdatum
25.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 7/2023
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-022-04443-4

Weitere Artikel der Ausgabe 7/2023

Polymer Bulletin 7/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.