Skip to main content
Erschienen in: Experiments in Fluids 5/2011

01.11.2011 | Research Article

Comparison of turbulent channel and pipe flows with varying Reynolds number

verfasst von: H. C. H. Ng, J. P. Monty, N. Hutchins, M. S. Chong, I. Marusic

Erschienen in: Experiments in Fluids | Ausgabe 5/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single normal hot-wire measurements of the streamwise component of velocity were taken in fully developed turbulent channel and pipe flows for matched friction Reynolds numbers ranging from 1,000 ≤ Re τ ≤ 3,000. A total of 27 velocity profile measurements were taken with a systematic variation in the inner-scaled hot-wire sensor length l + and the hot-wire length-to-diameter ratio (l/d). It was observed that for constant l + = 22 and \(l/d \gtrsim 200\), the near-wall peak in turbulence intensity rises with Reynolds number in both channels and pipes. This is in contrast to Hultmark et al. in J Fluid Mech 649:103–113, (2010), who report no growth in the near-wall peak turbulence intensity for pipe flow with l + = 20. Further, it was found that channel and pipe flows have very similar streamwise velocity statistics and energy spectra over this range of Reynolds numbers, with the only difference observed in the outer region of the mean velocity profile. Measurements where l + and l/d were systematically varied reveal that l + effects are akin to spatial filtering and that increasing sensor size will lead to attenuation of an increasingly large range of small scales. In contrast, when l/d was insufficient, the measured energy is attenuated over a very broad range of scales. These findings are in agreement with similar studies in boundary layer flows and highlight the need to carefully consider sensor and anemometry parameters when comparing flows across different geometries and when drawing conclusions regarding the Reynolds number dependency of measured turbulence statistics. With an emphasis on accuracy, measurement resolution and wall proximity, these measurements are taken at comparable Reynolds numbers to currently available DNS data sets of turbulent channel/pipe flows and are intended to serve as a database for comparison between physical and numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Balakumar BJ, Adrian RJ (2007) Large and very-large-scale motions in channel and boundary-layer flows. Philos Trans R Soc A 365:665–681MATHCrossRef Balakumar BJ, Adrian RJ (2007) Large and very-large-scale motions in channel and boundary-layer flows. Philos Trans R Soc A 365:665–681MATHCrossRef
Zurück zum Zitat Bruun HH (1995) Hot-Wire anemometry: principles and signal analysis, 1st edn. Oxford University Press, New York Bruun HH (1995) Hot-Wire anemometry: principles and signal analysis, 1st edn. Oxford University Press, New York
Zurück zum Zitat Buschmann MH, Gad-el-Hak M (2009) Evidence of nonlogarithmic behaviour of turbulent channel and pipe flow. AIAA J 47(3):535–541CrossRef Buschmann MH, Gad-el-Hak M (2009) Evidence of nonlogarithmic behaviour of turbulent channel and pipe flow. AIAA J 47(3):535–541CrossRef
Zurück zum Zitat Buschmann MH, Gad-el-Hak M (2010) Normal and cross-flow Reynolds stresses: difference between confined and semi-confined flows. Exp Fluids 49(1):213–223CrossRef Buschmann MH, Gad-el-Hak M (2010) Normal and cross-flow Reynolds stresses: difference between confined and semi-confined flows. Exp Fluids 49(1):213–223CrossRef
Zurück zum Zitat Chin CC, Hutchins N, Ooi ASH, Marusic I (2009) Use of DNS data to investigate spatial resolution issues in measurements of wall bounded turbulence. Meas Sci Technol 20:115401 Chin CC, Hutchins N, Ooi ASH, Marusic I (2009) Use of DNS data to investigate spatial resolution issues in measurements of wall bounded turbulence. Meas Sci Technol 20:115401
Zurück zum Zitat Chung D, McKeon BJ (2010) Large-eddy simulation of large-scale flow structures in long channel flow. J Fluid Mech 661:341–364MATHCrossRef Chung D, McKeon BJ (2010) Large-eddy simulation of large-scale flow structures in long channel flow. J Fluid Mech 661:341–364MATHCrossRef
Zurück zum Zitat Comte-Bellot G (1965) Ecoulement turbulent entre deux parois paralleles. Technical Report 419, Publications Scientifiques et Techniques du Ministere de l’Air Comte-Bellot G (1965) Ecoulement turbulent entre deux parois paralleles. Technical Report 419, Publications Scientifiques et Techniques du Ministere de l’Air
Zurück zum Zitat DeGraaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346MATHCrossRef DeGraaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346MATHCrossRef
Zurück zum Zitat del Álamo J, Jiménez J (2009) Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech 640:5–26MathSciNetMATHCrossRef del Álamo J, Jiménez J (2009) Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech 640:5–26MathSciNetMATHCrossRef
Zurück zum Zitat del Álamo J, Jiménez J, Zandonade P, Moser RD (2004) Scaling of energy spectra in turbulent channels. J Fluid Mech 500:135–144MATHCrossRef del Álamo J, Jiménez J, Zandonade P, Moser RD (2004) Scaling of energy spectra in turbulent channels. J Fluid Mech 500:135–144MATHCrossRef
Zurück zum Zitat Dennis DJC, Nickels TB (2008) On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J Fluid Mech 614:197–206MathSciNetMATHCrossRef Dennis DJC, Nickels TB (2008) On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J Fluid Mech 614:197–206MathSciNetMATHCrossRef
Zurück zum Zitat Durst F, Jovanovic J, Sender J (1995) LDA measurements in the near-wall region of a turbulent pipe flow. J Fluids Mech 295:305–335CrossRef Durst F, Jovanovic J, Sender J (1995) LDA measurements in the near-wall region of a turbulent pipe flow. J Fluids Mech 295:305–335CrossRef
Zurück zum Zitat Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (1994) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–209CrossRef Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (1994) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–209CrossRef
Zurück zum Zitat Fernholz HH, Finley PJ (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerosp Sci 32:245–311CrossRef Fernholz HH, Finley PJ (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerosp Sci 32:245–311CrossRef
Zurück zum Zitat Guala M, Hommema SE, Adrian RJ (2006) Large-scale and very-large-scale motions in turbulent pipe flow. J Fluid Mech 554:521–542MATHCrossRef Guala M, Hommema SE, Adrian RJ (2006) Large-scale and very-large-scale motions in turbulent pipe flow. J Fluid Mech 554:521–542MATHCrossRef
Zurück zum Zitat Hoyas S, Jiménez J (2006) Scaling of velocity fluctuations in turbulent channel flows up to R e τ = 2003. Phys Fluids 18:011702 Hoyas S, Jiménez J (2006) Scaling of velocity fluctuations in turbulent channel flows up to R e τ = 2003. Phys Fluids 18:011702
Zurück zum Zitat Hoyas S, Jiménez J (2008) Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys Fluids 20:101511 Hoyas S, Jiménez J (2008) Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys Fluids 20:101511
Zurück zum Zitat Hultmark M, Bailey SCC, Smits AJ (2010) Scaling of near-wall turbulence intensity. J Fluid Mech 649:103–113MATHCrossRef Hultmark M, Bailey SCC, Smits AJ (2010) Scaling of near-wall turbulence intensity. J Fluid Mech 649:103–113MATHCrossRef
Zurück zum Zitat Hutchins N, Marusic I (2007a) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28MATHCrossRef Hutchins N, Marusic I (2007a) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28MATHCrossRef
Zurück zum Zitat Hutchins N, Marusic I (2007b) Large-scale influences in near-wall turbulence. Philos Trans R Soc A 365:647–664MATHCrossRef Hutchins N, Marusic I (2007b) Large-scale influences in near-wall turbulence. Philos Trans R Soc A 365:647–664MATHCrossRef
Zurück zum Zitat Hutchins N, Nickels T, Marusic I, Chong M (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef Hutchins N, Nickels T, Marusic I, Chong M (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef
Zurück zum Zitat Iwamoto K, Fukagata K, Kasagi N, Suzuki Y (2004) DNS of turbulent channel flow at R e τ = 1160 and evaluation of feedback control at practical reynolds numbers. In: Proceedings of the fifth symposium smart control of turbulence, 29 Feb–2 March Iwamoto K, Fukagata K, Kasagi N, Suzuki Y (2004) DNS of turbulent channel flow at R e τ = 1160 and evaluation of feedback control at practical reynolds numbers. In: Proceedings of the fifth symposium smart control of turbulence, 29 Feb–2 March
Zurück zum Zitat Iwamoto K, Kasagi N, Suzuki Y (2005) Direct numerical simulation of turbulence channel flow at R e τ = 2320. In: Proceedings of the sixth symposium smart control of turbulence, Tokyo Iwamoto K, Kasagi N, Suzuki Y (2005) Direct numerical simulation of turbulence channel flow at R e τ = 2320. In: Proceedings of the sixth symposium smart control of turbulence, Tokyo
Zurück zum Zitat Jiménez J, Hoyas S (2008) Turbulent fluctuations above the buffer layer of wall-bounded turbulence. J Fluid Mech 611:215–236MATHCrossRef Jiménez J, Hoyas S (2008) Turbulent fluctuations above the buffer layer of wall-bounded turbulence. J Fluid Mech 611:215–236MATHCrossRef
Zurück zum Zitat Johansson AV, Alfredsson PH (1982) On the structure of turbulent channel flow. J Fluid Mech 122:295–314CrossRef Johansson AV, Alfredsson PH (1982) On the structure of turbulent channel flow. J Fluid Mech 122:295–314CrossRef
Zurück zum Zitat Johansson AV, Alfredsson PH (1983) Effects of imperfect spatial resolution on measurements of wall-bounded turbulent shear flows. J Fluid Mech 137:409–421CrossRef Johansson AV, Alfredsson PH (1983) Effects of imperfect spatial resolution on measurements of wall-bounded turbulent shear flows. J Fluid Mech 137:409–421CrossRef
Zurück zum Zitat Jorgensen FE (1996) The computer-controlled constant-temperature anemometer. Aspects of set-up, probe calibration, data acquisition and data conversion. Meas Sci Technol 7:1378–1387CrossRef Jorgensen FE (1996) The computer-controlled constant-temperature anemometer. Aspects of set-up, probe calibration, data acquisition and data conversion. Meas Sci Technol 7:1378–1387CrossRef
Zurück zum Zitat Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at a low Reynolds number. J Fluid Mech 177:133–166MATHCrossRef Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at a low Reynolds number. J Fluid Mech 177:133–166MATHCrossRef
Zurück zum Zitat Kline S, McClintock FA (1953) Describing uncertainties in single sample experiments. Mech Eng 75(1):38 Kline S, McClintock FA (1953) Describing uncertainties in single sample experiments. Mech Eng 75(1):38
Zurück zum Zitat Kline S, Reynolds W, Shrub F, Rundstadler P (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773CrossRef Kline S, Reynolds W, Shrub F, Rundstadler P (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773CrossRef
Zurück zum Zitat Laufer J (1950) Investigation of turbulent flow in a two-dimensional channel. Technical Report 1053, National Advisory Committee for Aeronautics Laufer J (1950) Investigation of turbulent flow in a two-dimensional channel. Technical Report 1053, National Advisory Committee for Aeronautics
Zurück zum Zitat Laufer J (1954) The structure of turbulence in fully developed pipe flow. Technical Report 1174, National Advisory Committee for Aeronautics Laufer J (1954) The structure of turbulence in fully developed pipe flow. Technical Report 1174, National Advisory Committee for Aeronautics
Zurück zum Zitat Lawn CJ (1971) The determination of the rate of dissipation in turbulent pipe flow. J Fluid Mech 48:477–505CrossRef Lawn CJ (1971) The determination of the rate of dissipation in turbulent pipe flow. J Fluid Mech 48:477–505CrossRef
Zurück zum Zitat Li JD, McKeon BJ, Jiang W, Morrison JF, Smits AJ (2004) The response of hot wires in high Reynolds-number turbulent pipe flow. Meas Sci Technol 15:789–798CrossRef Li JD, McKeon BJ, Jiang W, Morrison JF, Smits AJ (2004) The response of hot wires in high Reynolds-number turbulent pipe flow. Meas Sci Technol 15:789–798CrossRef
Zurück zum Zitat Ligrani P, Bradshaw P (1987) Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp Fluids 5:407–417CrossRef Ligrani P, Bradshaw P (1987) Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp Fluids 5:407–417CrossRef
Zurück zum Zitat Marusic I, Kunkel GJ (2003) Streamwise turbulence intensity formulation for flat plat-plate boundary layers. Phys Fluids 15(8):2461–2464CrossRef Marusic I, Kunkel GJ (2003) Streamwise turbulence intensity formulation for flat plat-plate boundary layers. Phys Fluids 15(8):2461–2464CrossRef
Zurück zum Zitat Marusic I, Uddin AKM, Perry AE (1997) Similarity laws for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys Fluids 9(12):3718–3726CrossRef Marusic I, Uddin AKM, Perry AE (1997) Similarity laws for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys Fluids 9(12):3718–3726CrossRef
Zurück zum Zitat Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22:065103 Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22:065103
Zurück zum Zitat Mathis R, Hutchins N, Marusic I (2009a) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech 628:311–337 Mathis R, Hutchins N, Marusic I (2009a) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech 628:311–337
Zurück zum Zitat Mathis R, Monty J, Hutchins N, Marusic I (2009b) Comparison of large-scale amplitude modulation in boundary layers, pipes and channel flows. Phys Fluids 21:111703 Mathis R, Monty J, Hutchins N, Marusic I (2009b) Comparison of large-scale amplitude modulation in boundary layers, pipes and channel flows. Phys Fluids 21:111703
Zurück zum Zitat McKeon BJ, Li J, Jiang W, Morrison JF, Smits AJ (2004) Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech 501:135–147MATHCrossRef McKeon BJ, Li J, Jiang W, Morrison JF, Smits AJ (2004) Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech 501:135–147MATHCrossRef
Zurück zum Zitat Metzger M, Klewicki J (2001) A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys Fluids 13(3):692–701CrossRef Metzger M, Klewicki J (2001) A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys Fluids 13(3):692–701CrossRef
Zurück zum Zitat Mochizuki S, Nieuwstadt FTM (1996) Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence. Exp Fluids 21:218–226CrossRef Mochizuki S, Nieuwstadt FTM (1996) Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence. Exp Fluids 21:218–226CrossRef
Zurück zum Zitat Monty JP (2005) Developments in smooth wall turbulent duct flows. Ph.D. thesis, The University of Melbourne Monty JP (2005) Developments in smooth wall turbulent duct flows. Ph.D. thesis, The University of Melbourne
Zurück zum Zitat Monty JP, Chong MS (2009) Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J Fluid Mech 633:461–474MATHCrossRef Monty JP, Chong MS (2009) Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J Fluid Mech 633:461–474MATHCrossRef
Zurück zum Zitat Monty JP, Stewart JA, Williams RC, Chong MS (2007) Large-scale features in turbulent pipe and channel flows. J Fluid Mech 589:147–156MATHCrossRef Monty JP, Stewart JA, Williams RC, Chong MS (2007) Large-scale features in turbulent pipe and channel flows. J Fluid Mech 589:147–156MATHCrossRef
Zurück zum Zitat Monty JP, Hutchins N, Ng H, Marusic I, Chong MS (2009) A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech 632:431–442MATHCrossRef Monty JP, Hutchins N, Ng H, Marusic I, Chong MS (2009) A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech 632:431–442MATHCrossRef
Zurück zum Zitat Morrison J, McKeon B, Jiang W, Smits A (2004) Scaling of the streamwise velocity component in turbulent pipe flow. J Fluid Mech 508:99–131MATHCrossRef Morrison J, McKeon B, Jiang W, Smits A (2004) Scaling of the streamwise velocity component in turbulent pipe flow. J Fluid Mech 508:99–131MATHCrossRef
Zurück zum Zitat Morrison WRB, Kronauer RE (1969) Structural similarity for fully developed turbulence on smooth tubes. J Fluid Mech 39:117–141CrossRef Morrison WRB, Kronauer RE (1969) Structural similarity for fully developed turbulence on smooth tubes. J Fluid Mech 39:117–141CrossRef
Zurück zum Zitat Nagib HM, Chauhan K (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids 20:101518 Nagib HM, Chauhan K (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids 20:101518
Zurück zum Zitat Niederschulte MA, Adrian RJ, Hanratty TJ (1990) Measurements of turbulent flow in a channel at low Reynolds numbers. Exp Fluids 9:222–230CrossRef Niederschulte MA, Adrian RJ, Hanratty TJ (1990) Measurements of turbulent flow in a channel at low Reynolds numbers. Exp Fluids 9:222–230CrossRef
Zurück zum Zitat Perry AE, Abell C (1975) Scaling laws for pipe-flow turbulence. J Fluid Mech 67:257–271CrossRef Perry AE, Abell C (1975) Scaling laws for pipe-flow turbulence. J Fluid Mech 67:257–271CrossRef
Zurück zum Zitat Perry AE, Hafez S, Chong MS (2001) A possible reinterpretation of the princeton superpipe data. J Fluid Mech 439:395–401MATHCrossRef Perry AE, Hafez S, Chong MS (2001) A possible reinterpretation of the princeton superpipe data. J Fluid Mech 439:395–401MATHCrossRef
Zurück zum Zitat Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490CrossRef Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490CrossRef
Zurück zum Zitat den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9(11):3398–3409CrossRef den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9(11):3398–3409CrossRef
Zurück zum Zitat Wei T, Willmarth WW (1989) Reynolds-number effects on the structure of a turbulent channel flow. J Fluid Mech 204:57–95CrossRef Wei T, Willmarth WW (1989) Reynolds-number effects on the structure of a turbulent channel flow. J Fluid Mech 204:57–95CrossRef
Zurück zum Zitat Wu X, Moin P (2008) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech 608:81–112MATHCrossRef Wu X, Moin P (2008) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech 608:81–112MATHCrossRef
Zurück zum Zitat Yavuzkurt S (1984) A guide to uncertainty analysis of hot-wire data. J Fluids Eng 106:181–186CrossRef Yavuzkurt S (1984) A guide to uncertainty analysis of hot-wire data. J Fluids Eng 106:181–186CrossRef
Zurück zum Zitat Zagarola M, Smits A (1998) Mean flow scaling in turbulent pipe flow. J Fluid Mech 373:33–79MATHCrossRef Zagarola M, Smits A (1998) Mean flow scaling in turbulent pipe flow. J Fluid Mech 373:33–79MATHCrossRef
Zurück zum Zitat Zanoun ES, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids 15(10):3079–3089CrossRef Zanoun ES, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids 15(10):3079–3089CrossRef
Metadaten
Titel
Comparison of turbulent channel and pipe flows with varying Reynolds number
verfasst von
H. C. H. Ng
J. P. Monty
N. Hutchins
M. S. Chong
I. Marusic
Publikationsdatum
01.11.2011
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 5/2011
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-011-1143-x

Weitere Artikel der Ausgabe 5/2011

Experiments in Fluids 5/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.