Skip to main content
Erschienen in: Experiments in Fluids 2/2023

01.02.2023 | Research Article

Unsteady flow generation in a wind tunnel using an active grid

verfasst von: A. Azzam, P. Lavoie

Erschienen in: Experiments in Fluids | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unsteady flows are pervasive in nature and engineering applications, such as unmanned aerial vehicles and wind turbines. Simulating these flows in an experimental setting is important to enable a better understanding of the effect of unsteady flow conditions in many applications and prevent detrimental changes in performance or dangerous conditions. This study explores the capabilities of an active grid to produce unsteady flows in a recirculating wind tunnel. An important advantage of using an active grid for this purpose is that relatively high levels of turbulence intensity can be superimposed on the resulting unsteady flow field if desired without the need for additional turbulence production devices. The active grid was tested with different excitation modes that allow control over the unsteady flow frequency, amplitude, waveform and turbulence intensity. Hot-wire measurements demonstrate that the grid can generate flows typical of those used in previous experiments of unsteady aerodynamics. Mean grid blockage, freestream speed and the tunnel size are all shown to be the critical factors influencing the resulting flow. An analytical model of the wind tunnel and active grid system is presented that can predict the resulting unsteady flow characteristics. The model shows good agreement with experimental results. Finally, it is shown that the active grid produces turbulence with an intensity independent of the Reynolds number, in a similar manner to a passive grid, when operated to generate unsteady flow conditions at frequencies lower than the characteristic frequency of the turbulent large scales of the flow. When the unsteady flow frequency is comparable to that of the large scales, the turbulence intensity increases and shows a dependence on the flow Reynolds number.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Asmi K, Castro I (1993) Production of oscillatory flow in wind tunnels. Exp Fluids 15:33–41CrossRef Al-Asmi K, Castro I (1993) Production of oscillatory flow in wind tunnels. Exp Fluids 15:33–41CrossRef
Zurück zum Zitat Azzam A (2018) On the generation of unsteady mean and turbulent flows in a wind tunnel using an active grid. Master’s thesis, University of Toronto Azzam A (2018) On the generation of unsteady mean and turbulent flows in a wind tunnel using an active grid. Master’s thesis, University of Toronto
Zurück zum Zitat Benedict LH, Gould RD (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22(2):129–136CrossRef Benedict LH, Gould RD (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22(2):129–136CrossRef
Zurück zum Zitat Farnsworth J, Sinner D, Gloutak D, Droste L, Bateman D (2020) Design and qualification of an unsteady low-speed wind tunnel with an upstream louver system. Exp Fluids 61:1–17CrossRef Farnsworth J, Sinner D, Gloutak D, Droste L, Bateman D (2020) Design and qualification of an unsteady low-speed wind tunnel with an upstream louver system. Exp Fluids 61:1–17CrossRef
Zurück zum Zitat Grandlund K, Monnier B, Ol M, Williams D (2014) Airfoil longitudinal gust response in separated vs. attached flows. Phys Fluids 26(2):228–244 Grandlund K, Monnier B, Ol M, Williams D (2014) Airfoil longitudinal gust response in separated vs. attached flows. Phys Fluids 26(2):228–244
Zurück zum Zitat Greenberg JM (1947) Airfoil in sinusoidal motion in a pulsating stream. Tech. Rep. TN1326, NACA Greenberg JM (1947) Airfoil in sinusoidal motion in a pulsating stream. Tech. Rep. TN1326, NACA
Zurück zum Zitat Greenblatt D (2016) Unsteady low-speed wind tunnels. AIAA J 54(6):1817–1830CrossRef Greenblatt D (2016) Unsteady low-speed wind tunnels. AIAA J 54(6):1817–1830CrossRef
Zurück zum Zitat Hearst RJ, Ganapathisubramani B (2017) Tailoring incoming shear and turbulence profiles for lab-scale wind turbines. Wind Energy 20(12):2021–2035CrossRef Hearst RJ, Ganapathisubramani B (2017) Tailoring incoming shear and turbulence profiles for lab-scale wind turbines. Wind Energy 20(12):2021–2035CrossRef
Zurück zum Zitat Hearst RJ, Lavoie P (2015) The effect of active grid initial conditions on high Reynolds number turbulence. Exp Fluids 56(10):1–20CrossRef Hearst RJ, Lavoie P (2015) The effect of active grid initial conditions on high Reynolds number turbulence. Exp Fluids 56(10):1–20CrossRef
Zurück zum Zitat Heißelmann H, Peinke J, Hölling M (2016) Experimental airfoil characterization under tailored turbulent conditions. J Phys: Conf Ser 753:072020 Heißelmann H, Peinke J, Hölling M (2016) Experimental airfoil characterization under tailored turbulent conditions. J Phys: Conf Ser 753:072020
Zurück zum Zitat Holmes DW (1973) Lift and measurements in an aerofoil in unsteady flow. In: international gas turbine conference and products show, ASME, Washington DC Holmes DW (1973) Lift and measurements in an aerofoil in unsteady flow. In: international gas turbine conference and products show, ASME, Washington DC
Zurück zum Zitat Jørgensen FE (2002) How to measure turbulence with hot-wire anemometers - a practical guide. Dantec Dynamics, Skovlunde Jørgensen FE (2002) How to measure turbulence with hot-wire anemometers - a practical guide. Dantec Dynamics, Skovlunde
Zurück zum Zitat Larssen JV, Devenport WJ (2011) On the generation of large-scale homogeneous turbulence. Exp Fluids 50:1207–1223CrossRef Larssen JV, Devenport WJ (2011) On the generation of large-scale homogeneous turbulence. Exp Fluids 50:1207–1223CrossRef
Zurück zum Zitat Makita H (1991) Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn Res 8:53–64CrossRef Makita H (1991) Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn Res 8:53–64CrossRef
Zurück zum Zitat Malone JB (1974) Dynamic stall characteristics of an oscillating airfoil in a harmonically varying freestream velocity. PhD thesis, Georgia Institute of Technology Malone JB (1974) Dynamic stall characteristics of an oscillating airfoil in a harmonically varying freestream velocity. PhD thesis, Georgia Institute of Technology
Zurück zum Zitat Miller IS, Shah DA, Antonia RA (1987) A constant temperature hot-wire anemometer. J Phys E: Sci Instrum 20:311–314CrossRef Miller IS, Shah DA, Antonia RA (1987) A constant temperature hot-wire anemometer. J Phys E: Sci Instrum 20:311–314CrossRef
Zurück zum Zitat Miller JA, Fejer AA (1964) Transition phenomena in oscillating boundary-layer flows. J Fluid Mech 18(3):438–448CrossRefMATH Miller JA, Fejer AA (1964) Transition phenomena in oscillating boundary-layer flows. J Fluid Mech 18(3):438–448CrossRefMATH
Zurück zum Zitat Mydlarski L (2017) A turbulent quarter century of active grids: from makita (1991) to the present. Fluid Dyn Res 49:061401MathSciNetCrossRef Mydlarski L (2017) A turbulent quarter century of active grids: from makita (1991) to the present. Fluid Dyn Res 49:061401MathSciNetCrossRef
Zurück zum Zitat Pearson BR, Å Krogstad P, van de Water W (2002) Measurements of the turbulent energy dissipation rate. Phys Fluids 14:1288CrossRef Pearson BR, Å Krogstad P, van de Water W (2002) Measurements of the turbulent energy dissipation rate. Phys Fluids 14:1288CrossRef
Zurück zum Zitat Rennie RM, Catron B, Feroz MZ, Williams D (2017) Mathematical modeling of wind tunnels for low-Reynolds number unsteady aerodynamic testing. In: 55th AIAA aerospace sciences meeting-1532, AIAA sciTech forum, Grapevine, Texas Rennie RM, Catron B, Feroz MZ, Williams D (2017) Mathematical modeling of wind tunnels for low-Reynolds number unsteady aerodynamic testing. In: 55th AIAA aerospace sciences meeting-1532, AIAA sciTech forum, Grapevine, Texas
Zurück zum Zitat Rennie RM, Catron B, Feroz MZ, Williams D (2018) Model predictive control of wind-tunnel wind speed for low-Re unsteady aerodynamic testing. In: 2018 AIAA Aerospace Sciences Meeting-0627. AIAA SciTech Forum, Kissimmee, Florida Rennie RM, Catron B, Feroz MZ, Williams D (2018) Model predictive control of wind-tunnel wind speed for low-Re unsteady aerodynamic testing. In: 2018 AIAA Aerospace Sciences Meeting-0627. AIAA SciTech Forum, Kissimmee, Florida
Zurück zum Zitat Smith J, Liu C, Chen W (2016) Disturbance observer based control for gust alleviation of a small fixed-wing UAS.In: 2016 international conference on unmanned aircraft systems. IEEE, Arlington, VA, pp 97–106 Smith J, Liu C, Chen W (2016) Disturbance observer based control for gust alleviation of a small fixed-wing UAS.In: 2016 international conference on unmanned aircraft systems. IEEE, Arlington, VA, pp 97–106
Zurück zum Zitat Strangfeld C, Muller-Vahl H, Nayeri CN, Paschereit CO, Greenblatt D (2016) Airfoil in a high amplitude oscillating stream. J Fluid Mech 793:79–108MathSciNetCrossRefMATH Strangfeld C, Muller-Vahl H, Nayeri CN, Paschereit CO, Greenblatt D (2016) Airfoil in a high amplitude oscillating stream. J Fluid Mech 793:79–108MathSciNetCrossRefMATH
Zurück zum Zitat Tang DM, Cizmas PGA, Dowell EH (1996) Experiments and analysis for a gust generator in a wind tunnel. J Aircraft 33(1):139–148CrossRef Tang DM, Cizmas PGA, Dowell EH (1996) Experiments and analysis for a gust generator in a wind tunnel. J Aircraft 33(1):139–148CrossRef
Zurück zum Zitat Tennekes H (2009) The Simple Science of Flight, revised and, expanded. MIT Press, Cambridge Tennekes H (2009) The Simple Science of Flight, revised and, expanded. MIT Press, Cambridge
Zurück zum Zitat Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. Tech. Rep. R-496, NACA Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. Tech. Rep. R-496, NACA
Zurück zum Zitat Watkins S, Milbank J, Loxton BJ, Melbourne WH (2006) Atmospheric winds and their implications for microair vehicles. AIAA J 44:2591–2600CrossRef Watkins S, Milbank J, Loxton BJ, Melbourne WH (2006) Atmospheric winds and their implications for microair vehicles. AIAA J 44:2591–2600CrossRef
Zurück zum Zitat Yang Y, Li M, Ma C, Li S (2017) Experimental investigation on the unsteady lift of an airfoil in a sinusoidal streamwise gust. Phys Fluids 29:51703CrossRef Yang Y, Li M, Ma C, Li S (2017) Experimental investigation on the unsteady lift of an airfoil in a sinusoidal streamwise gust. Phys Fluids 29:51703CrossRef
Metadaten
Titel
Unsteady flow generation in a wind tunnel using an active grid
verfasst von
A. Azzam
P. Lavoie
Publikationsdatum
01.02.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 2/2023
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-023-03571-5

Weitere Artikel der Ausgabe 2/2023

Experiments in Fluids 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.