Skip to main content
Erschienen in: Engineering with Computers 4/2012

01.10.2012 | Original Article

Introducing the target-matrix paradigm for mesh optimization via node-movement

verfasst von: Patrick Knupp

Erschienen in: Engineering with Computers | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A general-purpose algorithm for mesh optimization via node-movement, known as the Target-Matrix Paradigm, is introduced. The algorithm is general purpose in that it can be applied to a wide variety of mesh and element types, and to various commonly recurring mesh optimization problems such as shape improvement, and to more unusual problems like boundary-layer preservation with sliver removal, high-order mesh improvement, and edge-length equalization. The algorithm can be considered to be a direct optimization method in which weights are automatically constructed to enable definitions of application-specific mesh quality. The high-level concepts of the paradigm have been implemented in the Mesquite mesh improvement library, along with a number of concrete algorithms that address mesh quality issues such as those shown in the examples of the present paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Eventually these reports will become either archive journal papers or part of a monograph on mesh optimization.
 
2
Regrettably, the natural acronym for the target-matrix paradigm is TMP, which has the connotation of temporariness, which we hope is not the future of this method.
 
3
There also exist methods of mesh adaptation via mesh modification which use metric tensor weightings (see [21] for a general discussion).
 
4
In our notation, V plays the role of Q in the QR factorization, i.e, it is the orthogonal matrix. The product \(\Uplambda Q \Updelta\) is R in the QR-factorization. A similar explicit factorization can be given for 3 × 3 matrices as well (see [25]).
 
5
\(\parallel \cdot \parallel_F\) is the Frobenius matrix norm.
 
6
All figures in this example courtesy of Jan-Renee Carlson, NASA-Langley.
 
7
The two metrics are linearly combined, both have an ideal value of zero, and both can go to infinity. The combined metric has an ideal value of zero, which would be attained only if A = R W 1 and A = W 2, with R an arbitrary rotation matrix. In turn, this would require W 2 = R W 1. But W 1 corresponds to an equilateral element, while W 2 does not, in general. Therefore, the ideal value of zero is not attained for most, if not all, of the elements in the mesh. The second metric is known to be strictly convex in the vertex coordinates; convexity is not established for the first metric. Hence, convexity is not assured for this combination.
 
8
The constant 0.4394 was determined by requiring that c k  = 0.9 when d k  = 130°.
 
Literatur
2.
Zurück zum Zitat Freitag L, Knupp P (2002) Tetrahedral mesh improvement via optimization of the element condition number. Intl J Numer Meth Engr 53:1377–1391MathSciNetMATHCrossRef Freitag L, Knupp P (2002) Tetrahedral mesh improvement via optimization of the element condition number. Intl J Numer Meth Engr 53:1377–1391MathSciNetMATHCrossRef
3.
Zurück zum Zitat Knupp P, Margolin L, Shashkov M (2002) Reference-Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods. J Comp Phys 176(1):93–128MATHCrossRef Knupp P, Margolin L, Shashkov M (2002) Reference-Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods. J Comp Phys 176(1):93–128MATHCrossRef
4.
Zurück zum Zitat Knupp P (2006) Formulation of a target-matrix paradigm for mesh optimization. SAND2006-2730J, Sandia National Laboratories, Albuquerque Knupp P (2006) Formulation of a target-matrix paradigm for mesh optimization. SAND2006-2730J, Sandia National Laboratories, Albuquerque
5.
Zurück zum Zitat Knupp P (2009) Measuring quality within mesh elements. SAND2009-3081J. Sandia National Laboratories, Albuquerque Knupp P (2009) Measuring quality within mesh elements. SAND2009-3081J. Sandia National Laboratories, Albuquerque
6.
Zurück zum Zitat Knupp P (2009) Label-invariant mesh quality metrics. In: Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, pp. 139–155 Knupp P (2009) Label-invariant mesh quality metrics. In: Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, pp. 139–155
7.
Zurück zum Zitat Knupp P Tradeoff-coefficient and binary metric construction algorithms within the target-matrix paradigm. manuscript Knupp P Tradeoff-coefficient and binary metric construction algorithms within the target-matrix paradigm. manuscript
9.
Zurück zum Zitat Knupp P (2010) Introducing the target-matrix paradigm for mesh optimization via node-movement. In: Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, pp. 67–83 Knupp P (2010) Introducing the target-matrix paradigm for mesh optimization via node-movement. In: Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, pp. 67–83
10.
Zurück zum Zitat Brewer M, Diachin L, Knupp P, Melander D (2003) The mesquite mesh quality improvement toolkit. In: Proceedings of the 12th International Meshing Roundtable, Santa Fe NM, pp. 239–250 Brewer M, Diachin L, Knupp P, Melander D (2003) The mesquite mesh quality improvement toolkit. In: Proceedings of the 12th International Meshing Roundtable, Santa Fe NM, pp. 239–250
12.
Zurück zum Zitat Tinoco-Ruiz J, Barrera-Sanchez P et al (1998) Area functionals in plane grid generation. In: Cross M (eds) Numerical grid generation in computational field simulations.. Greenwhich, UK, pp 293–302 Tinoco-Ruiz J, Barrera-Sanchez P et al (1998) Area functionals in plane grid generation. In: Cross M (eds) Numerical grid generation in computational field simulations.. Greenwhich, UK, pp 293–302
13.
Zurück zum Zitat Kennon S, Dulikravich G (1986) Generation of computational grids using optimization. AIAA J 24(7):1069–1073MATHCrossRef Kennon S, Dulikravich G (1986) Generation of computational grids using optimization. AIAA J 24(7):1069–1073MATHCrossRef
14.
Zurück zum Zitat Freitag L (1997) On combining Laplacian and optimization-based mesh smoothing techniques. AMD-Vol. 220, Trends in Unstructured Mesh Generation, ASME, pp. 37–43 Freitag L (1997) On combining Laplacian and optimization-based mesh smoothing techniques. AMD-Vol. 220, Trends in Unstructured Mesh Generation, ASME, pp. 37–43
15.
Zurück zum Zitat Zhou T and Shimada K (2000) An angle-based approach to two-dimensional mesh smoothing. Proceedings of the 9th International Meshing Roundtable, pp. 373–384 Zhou T and Shimada K (2000) An angle-based approach to two-dimensional mesh smoothing. Proceedings of the 9th International Meshing Roundtable, pp. 373–384
18.
Zurück zum Zitat Liseikin V (1992) On a variational method of generating adaptive grids on n-dimensional surfaces. Soviet Math Docl 44(1):149–152MathSciNet Liseikin V (1992) On a variational method of generating adaptive grids on n-dimensional surfaces. Soviet Math Docl 44(1):149–152MathSciNet
19.
Zurück zum Zitat Winslow A (1967) Numerical solution of the quasilinear Poisson equations in a nonuniform triangle mesh. J Comp Phys 2:149–172MathSciNet Winslow A (1967) Numerical solution of the quasilinear Poisson equations in a nonuniform triangle mesh. J Comp Phys 2:149–172MathSciNet
21.
Zurück zum Zitat Frey P, George P (2008) Mesh generation: application to finite elements. Wiley, New YorkMATH Frey P, George P (2008) Mesh generation: application to finite elements. Wiley, New YorkMATH
23.
Zurück zum Zitat Thompson J, Warsi Z, Mastin C (1977) Automatic numerical generation of body-fitted curvilinear coordinate systems. J Comp Phys 24:274–302MATHCrossRef Thompson J, Warsi Z, Mastin C (1977) Automatic numerical generation of body-fitted curvilinear coordinate systems. J Comp Phys 24:274–302MATHCrossRef
24.
Zurück zum Zitat Liseikin V (2004) A computational differential geometry approach to grid generation. Springer, BerlinMATH Liseikin V (2004) A computational differential geometry approach to grid generation. Springer, BerlinMATH
25.
Zurück zum Zitat Knupp P (2009) Target-matrix construction algorithms. SAND2009-7003P, Sandia National Laboratories, Albuquerque Knupp P (2009) Target-matrix construction algorithms. SAND2009-7003P, Sandia National Laboratories, Albuquerque
26.
Zurück zum Zitat P. Knupp and J. Kraftcheck, Surface mesh optimization in the target-matrix paradigm. manuscript P. Knupp and J. Kraftcheck, Surface mesh optimization in the target-matrix paradigm. manuscript
27.
Zurück zum Zitat Knupp P (2001) Hexahedral and tetrahedral mesh untangling. Eng Comput 17(3):261–268MATHCrossRef Knupp P (2001) Hexahedral and tetrahedral mesh untangling. Eng Comput 17(3):261–268MATHCrossRef
28.
Zurück zum Zitat Franks J, Knupp P (2010) A new strategy for untangling 2D meshes via node-movement. In: CSRI Summer Proceedings, SAND2010-8783P, Sandia National Laboratories, Albuquerque, pp. 152–165 Franks J, Knupp P (2010) A new strategy for untangling 2D meshes via node-movement. In: CSRI Summer Proceedings, SAND2010-8783P, Sandia National Laboratories, Albuquerque, pp. 152–165
29.
Zurück zum Zitat Knupp P (2006) Local 2D metrics for mesh optimization in the target-matrix paradigm. SAND2006-7382J, Sandia National Laboratories, Albuquerque Knupp P (2006) Local 2D metrics for mesh optimization in the target-matrix paradigm. SAND2006-7382J, Sandia National Laboratories, Albuquerque
30.
Zurück zum Zitat Knupp P, van der Zee E (2006) Convexity of mesh optimization metrics using a target-matrix paradigm. SAND2006-4975J, Sandia National Laboratories, Albuquerque Knupp P, van der Zee E (2006) Convexity of mesh optimization metrics using a target-matrix paradigm. SAND2006-4975J, Sandia National Laboratories, Albuquerque
31.
Zurück zum Zitat Knupp P (2008) Analysis of 2D rotation-invariant non-barrier metrics in the target-matrix paradigm. SAND2008-8219P, Sandia National Laboratories, Albuquerque Knupp P (2008) Analysis of 2D rotation-invariant non-barrier metrics in the target-matrix paradigm. SAND2008-8219P, Sandia National Laboratories, Albuquerque
33.
Zurück zum Zitat Luo X, Shephard M, Lee L, Ge L, Ng C (2010) Moving curved mesh adaptatio for higher order finite element simulations. Engr. Cmptrs., published online 27 Feb 2010 Luo X, Shephard M, Lee L, Ge L, Ng C (2010) Moving curved mesh adaptatio for higher order finite element simulations. Engr. Cmptrs., published online 27 Feb 2010
34.
Zurück zum Zitat Knupp P, Voshell N, and Kraftcheck J (2009) Quadratic triangle mesh untanglng and optimization via the target-matrix paradigm. In: CSRI Summer Proceedings, SAND2010-3083P, Sandia National Laboratories, Albuquerque, pp. 141–151 Knupp P, Voshell N, and Kraftcheck J (2009) Quadratic triangle mesh untanglng and optimization via the target-matrix paradigm. In: CSRI Summer Proceedings, SAND2010-3083P, Sandia National Laboratories, Albuquerque, pp. 141–151
Metadaten
Titel
Introducing the target-matrix paradigm for mesh optimization via node-movement
verfasst von
Patrick Knupp
Publikationsdatum
01.10.2012
Verlag
Springer-Verlag
Erschienen in
Engineering with Computers / Ausgabe 4/2012
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-011-0230-1

Weitere Artikel der Ausgabe 4/2012

Engineering with Computers 4/2012 Zur Ausgabe