Skip to main content
Erschienen in: Engineering with Computers 3/2016

01.07.2016 | Original Article

Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations

verfasst von: Andrei Alhadeff, Sofie E. Leon, Waldemar Celes, Glaucio H. Paulino

Erschienen in: Engineering with Computers | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We use the graphical processing unit (GPU) to perform dynamic fracture simulation using adaptively refined and coarsened finite elements and the inter-element cohesive zone model. Due to the limited memory available on the GPU, we created a specialized data structure for efficient representation of the evolving mesh given. To achieve maximum efficiency, we perform finite element calculation on a nodal basis (i.e., by launching one thread per node and collecting contributions from neighboring elements) rather than by launching threads per element, which requires expensive graph coloring schemes to avoid concurrency issues. These developments made possible the parallel adaptive mesh refinement and coarsening schemes to systematically change the topology of the mesh. We investigate aspects of the parallel implementation through microbranching examples, which has been explored experimentally and numerically in the literature. First, we use a reduced-scale version of the experimental specimen to demonstrate the impact of variation in floating point operations on the final fracture pattern. Interestingly, the parallel approach adds some randomness into the finite element simulation on the structured mesh in a similar way as would be expected from a random mesh. Next, we take advantage of the speedup of the implementation over a similar serial implementation to simulate a specimen whose size matches that of the actual experiment. At this scale, we are able to make more direct comparisons to the original experiment and find excellent agreement with those results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Kirk DB, Wen-mei WH (2010) Programming massively parallel processors: a hands-on approach. Morgan Kaufmann, San Francisco Kirk DB, Wen-mei WH (2010) Programming massively parallel processors: a hands-on approach. Morgan Kaufmann, San Francisco
3.
Zurück zum Zitat Brodtkorb AR, Hagen TR, Sætra ML (2013) Graphics processing unit (GPU) programming strategies and trends in GPU computing. J Parallel Distrib Comput 73(1):4–13CrossRef Brodtkorb AR, Hagen TR, Sætra ML (2013) Graphics processing unit (GPU) programming strategies and trends in GPU computing. J Parallel Distrib Comput 73(1):4–13CrossRef
4.
Zurück zum Zitat Dziekonski A, Sypek P, Lamecki A, Mrozowski M (2012) Generation of large finite-element matrices on multiple graphics processors. Int J Numer Methods Eng 94(2):204–220MathSciNetCrossRef Dziekonski A, Sypek P, Lamecki A, Mrozowski M (2012) Generation of large finite-element matrices on multiple graphics processors. Int J Numer Methods Eng 94(2):204–220MathSciNetCrossRef
5.
Zurück zum Zitat Cecka C, Lew AJ, Darve E (2010) Assembly of finite element methods on graphics processors. Int J Numer Methods Eng 85(5):640–669CrossRefMATH Cecka C, Lew AJ, Darve E (2010) Assembly of finite element methods on graphics processors. Int J Numer Methods Eng 85(5):640–669CrossRefMATH
6.
Zurück zum Zitat Wang L, Zhang YS, Zhu B, Xu C, Tian XW, Wang C, Mo JH, Li J (2012) GPU accelerated parallel cholesky factorization. Appl Mech Mater 148–149:1370–1373CrossRef Wang L, Zhang YS, Zhu B, Xu C, Tian XW, Wang C, Mo JH, Li J (2012) GPU accelerated parallel cholesky factorization. Appl Mech Mater 148–149:1370–1373CrossRef
7.
Zurück zum Zitat Dooley I, Mangala S, Kale L, Geubelle P (2008) Parallel simulations of dynamic fracture using extrinsic cohesive elements. J Sci Comput 39(1):144–165CrossRefMATH Dooley I, Mangala S, Kale L, Geubelle P (2008) Parallel simulations of dynamic fracture using extrinsic cohesive elements. J Sci Comput 39(1):144–165CrossRefMATH
8.
Zurück zum Zitat Lawlor OS, Chakravorty S, Wilmarth TL, Choudhury N, Dooley I, Zheng G, Kalé LV (2006) ParFUM: a parallel framework for unstructured meshes for scalable dynamic physics applications. Eng Comput 22(3–4):215–235CrossRef Lawlor OS, Chakravorty S, Wilmarth TL, Choudhury N, Dooley I, Zheng G, Kalé LV (2006) ParFUM: a parallel framework for unstructured meshes for scalable dynamic physics applications. Eng Comput 22(3–4):215–235CrossRef
9.
Zurück zum Zitat Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200(1–4):326–344MathSciNetCrossRefMATH Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200(1–4):326–344MathSciNetCrossRefMATH
10.
Zurück zum Zitat Espinha R, Park K, Paulino,GH, Celes W (2013) Scalable parallel dynamic fracture simulation using an extrinsic cohesive zone model. Comput Methods Appl Mech Eng 266(C):144–161 Espinha R, Park K, Paulino,GH, Celes W (2013) Scalable parallel dynamic fracture simulation using an extrinsic cohesive zone model. Comput Methods Appl Mech Eng 266(C):144–161
11.
Zurück zum Zitat Park S, Shin H (2012) Efficient generation of adaptive Cartesian mesh for computational fluid dynamics using GPU. Int J Numer Methods Fluids 70(11):1393–1404MathSciNetCrossRef Park S, Shin H (2012) Efficient generation of adaptive Cartesian mesh for computational fluid dynamics using GPU. Int J Numer Methods Fluids 70(11):1393–1404MathSciNetCrossRef
12.
Zurück zum Zitat Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRef Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRef
13.
Zurück zum Zitat Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(55–129):104MathSciNet Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(55–129):104MathSciNet
14.
Zurück zum Zitat Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908CrossRef Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908CrossRef
15.
Zurück zum Zitat Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802CrossRef Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802CrossRef
16.
Zurück zum Zitat Camacho G, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938CrossRefMATH Camacho G, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938CrossRefMATH
17.
Zurück zum Zitat Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(7):67–94 Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(7):67–94
18.
Zurück zum Zitat Boyalakuntla DS, Murthy JY (2002) Hierarchical compact models for simulation of electronic chip packages. Compon Packag Technol IEEE Trans 25(2):192–203CrossRef Boyalakuntla DS, Murthy JY (2002) Hierarchical compact models for simulation of electronic chip packages. Compon Packag Technol IEEE Trans 25(2):192–203CrossRef
19.
Zurück zum Zitat Ducros F, Ferrand V, Nicoud F, Weber C, Darracq D, Gacherieu C, Poinsot T (1999) Large-eddy simulation of the shock/turbulence interaction. J Comput Phys 152(2):517–549CrossRefMATH Ducros F, Ferrand V, Nicoud F, Weber C, Darracq D, Gacherieu C, Poinsot T (1999) Large-eddy simulation of the shock/turbulence interaction. J Comput Phys 152(2):517–549CrossRefMATH
20.
Zurück zum Zitat Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb DQ, MacNeice P, Rosner R, Truran JW, Tufo H (2000) FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys J Suppl Ser 131(1):273CrossRef Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb DQ, MacNeice P, Rosner R, Truran JW, Tufo H (2000) FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys J Suppl Ser 131(1):273CrossRef
21.
Zurück zum Zitat Celes W, Paulino GH, Espinha R (2005) A compact adjacency-based topological data structure for finite element mesh representation. Int J Numer Methods Eng 64(11):1529–1556CrossRefMATH Celes W, Paulino GH, Espinha R (2005) A compact adjacency-based topological data structure for finite element mesh representation. Int J Numer Methods Eng 64(11):1529–1556CrossRefMATH
22.
Zurück zum Zitat Welsh DJ, Powell MB (1967) An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput J 10(1):85–86CrossRefMATH Welsh DJ, Powell MB (1967) An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput J 10(1):85–86CrossRefMATH
23.
Zurück zum Zitat Park K, Paulino GH, Celes W, Espinha R (2012) Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Int J Numer Methods Eng 92(1):1–35MathSciNetCrossRef Park K, Paulino GH, Celes W, Espinha R (2012) Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Int J Numer Methods Eng 92(1):1–35MathSciNetCrossRef
24.
Zurück zum Zitat Velho L, Gomes J (2000) Variable Resolution 4-k Meshes: Concepts and Applications. Comput Graph Forum 19(4):195–212CrossRef Velho L, Gomes J (2000) Variable Resolution 4-k Meshes: Concepts and Applications. Comput Graph Forum 19(4):195–212CrossRef
25.
Zurück zum Zitat Bishop JE (2009) Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations. Comput Mech 44(4):455–471CrossRefMATH Bishop JE (2009) Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations. Comput Mech 44(4):455–471CrossRefMATH
26.
Zurück zum Zitat Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B Condens Matter Mater Phys 54(10):7128–7139CrossRef Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B Condens Matter Mater Phys 54(10):7128–7139CrossRef
27.
Zurück zum Zitat Zhang ZJ, Paulino GH, Celes W (2007) Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. Int J Numer Methods Eng 72(8):1017–1048CrossRefMATH Zhang ZJ, Paulino GH, Celes W (2007) Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. Int J Numer Methods Eng 72(8):1017–1048CrossRefMATH
28.
Zurück zum Zitat Paulino GH, Park K, Celes W, Espinha R (2010) Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators. Int J Numer Methods Eng 84(11):1303–1343CrossRefMATH Paulino GH, Park K, Celes W, Espinha R (2010) Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators. Int J Numer Methods Eng 84(11):1303–1343CrossRefMATH
29.
Zurück zum Zitat Spring DW, LeonSE, Paulino GH (2014) Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture 189(1):33–57 Spring DW, LeonSE, Paulino GH (2014) Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture 189(1):33–57
30.
Zurück zum Zitat Miller O, Freund LB, Needleman A (1999) Energy dissipation in dynamic fracture of brittle materials. Model Sim Mater Sci Eng 7(4):573CrossRef Miller O, Freund LB, Needleman A (1999) Energy dissipation in dynamic fracture of brittle materials. Model Sim Mater Sci Eng 7(4):573CrossRef
31.
Zurück zum Zitat Zhang Z (2007) Extrinsic cohesive modeling of dynamic fracture and microbranching instability using a topological data structure, Ph.D. thesis Zhang Z (2007) Extrinsic cohesive modeling of dynamic fracture and microbranching instability using a topological data structure, Ph.D. thesis
Metadaten
Titel
Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations
verfasst von
Andrei Alhadeff
Sofie E. Leon
Waldemar Celes
Glaucio H. Paulino
Publikationsdatum
01.07.2016
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2016
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-015-0431-0

Weitere Artikel der Ausgabe 3/2016

Engineering with Computers 3/2016 Zur Ausgabe