Skip to main content
Erschienen in: Archive of Applied Mechanics 3/2021

10.10.2020 | Original

Analysis of non-Newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy

verfasst von: M. Bilal, Y. Urva

Erschienen in: Archive of Applied Mechanics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main motive of this work is to study the effects of nonlinear radiation and mixed convection for the Casson nanofluid through the thin needle. Mass transfer is further characterized by activation energy. Temperature-dependent viscosity and a variable magnetic field are assumed for the current problem. The consequences of the physical framework on the velocity, temperature and species including the impact of radiative heat flux are discussed. The partial differential equations of the physical model are achieved using the concept of boundary layer approximation and are remolded into the ordinary differential mathematical statement which is coupled nonlinear, by substituting specific similarity transformations. By making the use of built-in MATLAB bvp4c function, the results are calculated and arranged in the manner of graphs and tables. The effects of different physical parameters of our interest such as the Casson fluid parameter, Brownian motion, Prandtl number, buoyancy ratio parameter, thermal radiation, thermophoresis parameter, Schmidt number and relaxation time are examined for the velocity, concentration and temperature profiles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lawrence, L.L.: Boundary layer over a thin needle. Phys. Fluids 10, 820–822 (1967)CrossRef Lawrence, L.L.: Boundary layer over a thin needle. Phys. Fluids 10, 820–822 (1967)CrossRef
2.
Zurück zum Zitat Ahmad, S., Arifin, N.M., Nazar, R., Pop, I.: Mixed convection boundary layer flow along vertical thin needles: assisting and opposing flows. Int. Commun. Heat Mass Trans. 35(2), 157–162 (2007)CrossRef Ahmad, S., Arifin, N.M., Nazar, R., Pop, I.: Mixed convection boundary layer flow along vertical thin needles: assisting and opposing flows. Int. Commun. Heat Mass Trans. 35(2), 157–162 (2007)CrossRef
3.
Zurück zum Zitat Trimbitas, R., Grosan, T., Pop, I.: Mixed convection boundary layer flow along vertical thin needles in nanofluids. Int. J. Numer. Methods Heat Fluid Flow 24(3), 579–594 (2014)MathSciNetCrossRef Trimbitas, R., Grosan, T., Pop, I.: Mixed convection boundary layer flow along vertical thin needles in nanofluids. Int. J. Numer. Methods Heat Fluid Flow 24(3), 579–594 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Water-carbon nanofluid flow with variable heat flux by a thin needle. J. Mol. Liq. 224(A), 786–791 (2016)CrossRef Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Water-carbon nanofluid flow with variable heat flux by a thin needle. J. Mol. Liq. 224(A), 786–791 (2016)CrossRef
5.
Zurück zum Zitat Ahmad, R., Mustafa, M., Hina, S.: Buongiorno’s model for fluid flow around a moving thin needle in a flowing nanofluid: A numerical study. Chin. J. Phys. 55(4), 1264–1274 (2017)CrossRef Ahmad, R., Mustafa, M., Hina, S.: Buongiorno’s model for fluid flow around a moving thin needle in a flowing nanofluid: A numerical study. Chin. J. Phys. 55(4), 1264–1274 (2017)CrossRef
6.
Zurück zum Zitat Salleh, S.N.A., Bachok, N., Arifin, N.M., Ali, F.M., Pop, I.: Magnetohydrodynamics flow past a moving vertical thin needle in a nanofluid with stability analysis. Energies 11(12), 1–15 (2018)CrossRef Salleh, S.N.A., Bachok, N., Arifin, N.M., Ali, F.M., Pop, I.: Magnetohydrodynamics flow past a moving vertical thin needle in a nanofluid with stability analysis. Energies 11(12), 1–15 (2018)CrossRef
7.
Zurück zum Zitat Souayeh, B., Reddy, M.G., Sreenivasulu, P.: Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J. Mol. Liq. 284, 163–174 (2019)CrossRef Souayeh, B., Reddy, M.G., Sreenivasulu, P.: Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J. Mol. Liq. 284, 163–174 (2019)CrossRef
8.
Zurück zum Zitat Sulochana, C., Ashwinkumar, G.P., Sandeep, N.: Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. Euro. Phys. J. Plus 132, 387 (2017)CrossRef Sulochana, C., Ashwinkumar, G.P., Sandeep, N.: Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. Euro. Phys. J. Plus 132, 387 (2017)CrossRef
9.
Zurück zum Zitat Krishna, P.M., Sharma, R.P., Sandeep, N.: Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows. J. Mol. Liq. 49(8), 1654–1659 (2017) Krishna, P.M., Sharma, R.P., Sandeep, N.: Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows. J. Mol. Liq. 49(8), 1654–1659 (2017)
10.
Zurück zum Zitat Khan, I., Waqar, A., Qasim, M., Afridi, I., Alharbi, S.O.: Thermodynamic analysis of entropy generation minimization in thermally dissipating flow over a thin needle moving in a parallel free stream of two Newtonian fluids. Entropy 21(1), 74 (2019)CrossRef Khan, I., Waqar, A., Qasim, M., Afridi, I., Alharbi, S.O.: Thermodynamic analysis of entropy generation minimization in thermally dissipating flow over a thin needle moving in a parallel free stream of two Newtonian fluids. Entropy 21(1), 74 (2019)CrossRef
11.
Zurück zum Zitat Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)CrossRef Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)CrossRef
12.
Zurück zum Zitat Haroun, M.H.: On electrohydrodynamic flow of Jeffrey fluid through a heating vibrating cylindrical tube with moving endoscope. Arch. Appl. Mech. 90, 1305–1315 (2020)CrossRef Haroun, M.H.: On electrohydrodynamic flow of Jeffrey fluid through a heating vibrating cylindrical tube with moving endoscope. Arch. Appl. Mech. 90, 1305–1315 (2020)CrossRef
13.
Zurück zum Zitat Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. USA, ASME FED 231/MD 66, 99–105 (1995) Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. USA, ASME FED 231/MD 66, 99–105 (1995)
14.
Zurück zum Zitat Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nanofluids. Sustain. Energy Rev. 43, 164–177 (2015)CrossRef Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nanofluids. Sustain. Energy Rev. 43, 164–177 (2015)CrossRef
15.
Zurück zum Zitat Chen, C., Chen, B., Liu, C.C.: Entropy generation in mixed convection magnetohydrodynamic nanofluid flow in vertical channel. Int. J. Heat Mass Trans. 91, 1026–1033 (2015)CrossRef Chen, C., Chen, B., Liu, C.C.: Entropy generation in mixed convection magnetohydrodynamic nanofluid flow in vertical channel. Int. J. Heat Mass Trans. 91, 1026–1033 (2015)CrossRef
16.
Zurück zum Zitat Dogonchi, A.S., Ganji, D.D.: Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. J. Mol. Liq. 220, 592–603 (2016)CrossRef Dogonchi, A.S., Ganji, D.D.: Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. J. Mol. Liq. 220, 592–603 (2016)CrossRef
17.
Zurück zum Zitat Khan, M., Malik, M.Y., Salahuddin, T., Rehman, K.U., Nasir, M., Khan, I.: MHD flow of Williamson nanofluid over a cone and plate with chemically reactive species. J. Mol. Liq. 231, 80–588 (2017)CrossRef Khan, M., Malik, M.Y., Salahuddin, T., Rehman, K.U., Nasir, M., Khan, I.: MHD flow of Williamson nanofluid over a cone and plate with chemically reactive species. J. Mol. Liq. 231, 80–588 (2017)CrossRef
18.
Zurück zum Zitat Hayat, T., Nadeem, S.: Heat transfer enhancement with Ag–CuO water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017)CrossRef Hayat, T., Nadeem, S.: Heat transfer enhancement with Ag–CuO water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017)CrossRef
19.
Zurück zum Zitat Peng, Y., Alsagri, A.S., Afrandcd, M., Moradi, R.: A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation. RSC Adv. 9(39), 22185–22197 (2019)CrossRef Peng, Y., Alsagri, A.S., Afrandcd, M., Moradi, R.: A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation. RSC Adv. 9(39), 22185–22197 (2019)CrossRef
20.
Zurück zum Zitat Bilal, M., Sagheer, M., Hussain, S.: Study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity. Alex. Eng. J. 57, 3281–3289 (2018)CrossRef Bilal, M., Sagheer, M., Hussain, S.: Study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity. Alex. Eng. J. 57, 3281–3289 (2018)CrossRef
21.
Zurück zum Zitat Iqbal, Z., Akbar, N.S., Azhar, E., Maraj, E.N.: Performance of hybrid nanofluid (Cu–CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. Alex. Eng. J. 57, 1943–1954 (2018)CrossRef Iqbal, Z., Akbar, N.S., Azhar, E., Maraj, E.N.: Performance of hybrid nanofluid (Cu–CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. Alex. Eng. J. 57, 1943–1954 (2018)CrossRef
22.
Zurück zum Zitat Sheikholeslami, M., Shehzad, S.A., Li, Z.: Nanofluid heat transfer intensification in a permeable channel due to magnetic field using Lattice Boltzmann method. Phys. B: Condens. Matter 542, 51–58 (2018)CrossRef Sheikholeslami, M., Shehzad, S.A., Li, Z.: Nanofluid heat transfer intensification in a permeable channel due to magnetic field using Lattice Boltzmann method. Phys. B: Condens. Matter 542, 51–58 (2018)CrossRef
23.
Zurück zum Zitat Bilal, M.: Micropolar flow of EMHD nanofluid with nonlinear thermal radiation and slip effects. Alex. Eng. J. 59, 965–976 (2020)CrossRef Bilal, M.: Micropolar flow of EMHD nanofluid with nonlinear thermal radiation and slip effects. Alex. Eng. J. 59, 965–976 (2020)CrossRef
24.
Zurück zum Zitat Awad, F.G., Motsa, S., Khumalo, M.: Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. PLoS One 10, 1371 (2014) Awad, F.G., Motsa, S., Khumalo, M.: Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. PLoS One 10, 1371 (2014)
25.
Zurück zum Zitat Shafique, Z., Mustafa, M., Mushtaq, A.: Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 6, 627–633 (2016)CrossRef Shafique, Z., Mustafa, M., Mushtaq, A.: Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 6, 627–633 (2016)CrossRef
26.
Zurück zum Zitat Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A.: Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Trans. 108, 1340–1346 (2017)CrossRef Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A.: Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Trans. 108, 1340–1346 (2017)CrossRef
27.
Zurück zum Zitat Khan, M.I., Qayyum, S., Hayat, T., Waqas, M., Khan, M.I., Alsaedi, A.: Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. J. Mol. Liq. 259, 274–283 (2018)CrossRef Khan, M.I., Qayyum, S., Hayat, T., Waqas, M., Khan, M.I., Alsaedi, A.: Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. J. Mol. Liq. 259, 274–283 (2018)CrossRef
28.
Zurück zum Zitat Ramesh, G.K., Shehzad, S.A., Hayat, T., Alsaedi, A.: Activation energy and chemical reaction in Maxwell magneto-nanoliquid with passive control of nanoparticle volume fraction. J. Braz. Soc. Mech. Sci. Eng. 40(9), 422 (2018)CrossRef Ramesh, G.K., Shehzad, S.A., Hayat, T., Alsaedi, A.: Activation energy and chemical reaction in Maxwell magneto-nanoliquid with passive control of nanoparticle volume fraction. J. Braz. Soc. Mech. Sci. Eng. 40(9), 422 (2018)CrossRef
29.
Zurück zum Zitat Khan, S.U., Tlili, I.: Significance of activation energy and effective Prandtl number in accelerated flow of Jeffrey nanoparticles with gyrotactic microorganisms. J. Energy Resour. Tech. 142(11), 112101 (2020)CrossRef Khan, S.U., Tlili, I.: Significance of activation energy and effective Prandtl number in accelerated flow of Jeffrey nanoparticles with gyrotactic microorganisms. J. Energy Resour. Tech. 142(11), 112101 (2020)CrossRef
30.
Zurück zum Zitat Khan, S.U., Imran, M., Tlili, I., Waqas, H.: Activation energy and thermal radiation aspects in bioconvection flow of rate-type nanoparticles configured by a stretching/shrinking disk. J. Energy Resour. Tech. 142(11), 112102 (2020)CrossRef Khan, S.U., Imran, M., Tlili, I., Waqas, H.: Activation energy and thermal radiation aspects in bioconvection flow of rate-type nanoparticles configured by a stretching/shrinking disk. J. Energy Resour. Tech. 142(11), 112102 (2020)CrossRef
31.
Zurück zum Zitat Cao, Y., Bai, Y., Du, J., Rashidi, S.: A computational fluid dynamics investigation on the effect of the angular velocities of hot and cold turbulator cylinders on the heat transfer characteristics of nanofluid flows within a porous cavity. J. Energy Resour. Tech. 142(11), 112104 (2020)CrossRef Cao, Y., Bai, Y., Du, J., Rashidi, S.: A computational fluid dynamics investigation on the effect of the angular velocities of hot and cold turbulator cylinders on the heat transfer characteristics of nanofluid flows within a porous cavity. J. Energy Resour. Tech. 142(11), 112104 (2020)CrossRef
32.
Zurück zum Zitat Sajid, T., Sagheer, M., Hussain, S., Bilal, M.: Darcy–Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 8, 035102 (2018)CrossRef Sajid, T., Sagheer, M., Hussain, S., Bilal, M.: Darcy–Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 8, 035102 (2018)CrossRef
33.
Zurück zum Zitat Lu, D.C., Ramzan, M., Bilal, M., Chung, J.D., Farooq, U.: A numerical investigation of 3D MHD rotating flow with binary chemical reaction, activation energy and non-Fourier heat flux. Commun. Theor. Phys. 70, 89–96 (2018)MathSciNetCrossRef Lu, D.C., Ramzan, M., Bilal, M., Chung, J.D., Farooq, U.: A numerical investigation of 3D MHD rotating flow with binary chemical reaction, activation energy and non-Fourier heat flux. Commun. Theor. Phys. 70, 89–96 (2018)MathSciNetCrossRef
34.
Zurück zum Zitat Malik, M.Y., Hussain, A., Nadeem, S.: Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity. Sci Iran. B 20(2), 313–321 (2013) Malik, M.Y., Hussain, A., Nadeem, S.: Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity. Sci Iran. B 20(2), 313–321 (2013)
35.
Zurück zum Zitat Miao, L., Massoudi, M.: Heat transfer analysis and flow of a slag-type fluid: effects of variable thermal conductivity and viscosity. Int. J. NonLinear Mech. 76, 8–19 (2015)CrossRef Miao, L., Massoudi, M.: Heat transfer analysis and flow of a slag-type fluid: effects of variable thermal conductivity and viscosity. Int. J. NonLinear Mech. 76, 8–19 (2015)CrossRef
36.
Zurück zum Zitat Animasaun, I.L., Sandeep, N.: Buoyancy induced model for the flow of 36 nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Tech. 301, 858–867 (2016)CrossRef Animasaun, I.L., Sandeep, N.: Buoyancy induced model for the flow of 36 nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Tech. 301, 858–867 (2016)CrossRef
37.
Zurück zum Zitat Hayat, T., Khan, M.I., Farooq, M., Gull, N., Alsaedi, A.: Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity. J. Mol. Liq. 223, 1297–1310 (2016)CrossRef Hayat, T., Khan, M.I., Farooq, M., Gull, N., Alsaedi, A.: Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity. J. Mol. Liq. 223, 1297–1310 (2016)CrossRef
38.
Zurück zum Zitat Sheikholeslami, M., Rokni, H.B.: Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity. Euro. Phys. J. Plus 132, 238 (2017)CrossRef Sheikholeslami, M., Rokni, H.B.: Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity. Euro. Phys. J. Plus 132, 238 (2017)CrossRef
Metadaten
Titel
Analysis of non-Newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy
verfasst von
M. Bilal
Y. Urva
Publikationsdatum
10.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 3/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01811-2

Weitere Artikel der Ausgabe 3/2021

Archive of Applied Mechanics 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.