Skip to main content
Erschienen in: Archive of Applied Mechanics 1/2023

10.02.2022 | Original

Vibrational behavior of thermoelastic rotating nanobeams with variable thermal properties based on memory-dependent derivative of heat conduction model

verfasst von: Ahmed E. Abouelregal, Doaa Atta, Hamid M. Sedighi

Erschienen in: Archive of Applied Mechanics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current work presents a theoretical framework to analyze the nonlocal thermoelastic model with a general kernel function for memory-based derivatives by incorporating two-time delays. The introduced model aims at studying the thermomechanical response of rotating size-dependent nanobeams. The nonlocal elasticity theory and the generalized heat conduction model with phase delays are utilized to formulate the problem. In the proposed model, the thermal conductivity is expected to vary linearly with temperature and the system is excited by a variable harmonic heat source by considering the time-dependent exponential decaying load. To this end, the semi-analytical solutions for the transverse and axial displacements, thermodynamic temperature and bending moment are examined using the Laplace transform method. The effects of the nonlocal parameter and various loading conditions are also investigated and discussed. Finally, it is demonstrated that how the linear variation of thermal conductivity could affect the performance of the considered system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sherief, H.H., EI-Sayed, A.M.A., EI-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 2(2), 992–996 (2010) Sherief, H.H., EI-Sayed, A.M.A., EI-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 2(2), 992–996 (2010)
2.
Zurück zum Zitat Ezzat, M.A., Fayik, M.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 108, 62–69 (2016)CrossRef Ezzat, M.A., Fayik, M.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 108, 62–69 (2016)CrossRef
3.
Zurück zum Zitat Abouelregal, A.E., Mohamed, B.O.: Fractional order thermoelasticity for a functionally graded thermoelastic nanobeam induced by a sinusoidal pulse heating. J. Comput. Theor. Nanosci. 15(4), 1233–1242 (2018)CrossRef Abouelregal, A.E., Mohamed, B.O.: Fractional order thermoelasticity for a functionally graded thermoelastic nanobeam induced by a sinusoidal pulse heating. J. Comput. Theor. Nanosci. 15(4), 1233–1242 (2018)CrossRef
4.
Zurück zum Zitat Ezzat, M.A., El-Bary, A.A.: Effects of phase lags on thermoelastic damping in micro-beam resonators. Int. J. Struct. Stabil. Dyn. 19, 1971005 (2019)MathSciNetCrossRef Ezzat, M.A., El-Bary, A.A.: Effects of phase lags on thermoelastic damping in micro-beam resonators. Int. J. Struct. Stabil. Dyn. 19, 1971005 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Abouelregal, A.E.: Modified fractional photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field. SILICON 12, 2837–2850 (2020)CrossRef Abouelregal, A.E.: Modified fractional photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field. SILICON 12, 2837–2850 (2020)CrossRef
6.
Zurück zum Zitat Ahmad, I., Ahmad, H., Thounthong, P., Chu, Y.M., Cesarano, C.: Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method. Symmetry 12(7), 1195 (2020)CrossRef Ahmad, I., Ahmad, H., Thounthong, P., Chu, Y.M., Cesarano, C.: Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method. Symmetry 12(7), 1195 (2020)CrossRef
7.
Zurück zum Zitat Abouelregal, A.E.: Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat. Waves Random Complex Media. 31, 812–832 (2019)MathSciNetMATHCrossRef Abouelregal, A.E.: Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat. Waves Random Complex Media. 31, 812–832 (2019)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J Mech Phys Solid 15, 299–309 (1967)MATHCrossRef Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J Mech Phys Solid 15, 299–309 (1967)MATHCrossRef
9.
Zurück zum Zitat Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transfer 9(4), 686–693 (1995)CrossRef Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transfer 9(4), 686–693 (1995)CrossRef
10.
Zurück zum Zitat Tzou, D.Y.: Unified field approach for heat conduction from macro- to micro-scales. J. Heat Transfer 117(1), 8–16 (1995)CrossRef Tzou, D.Y.: Unified field approach for heat conduction from macro- to micro-scales. J. Heat Transfer 117(1), 8–16 (1995)CrossRef
11.
Zurück zum Zitat Wang, J.L., Li, H.F.: Surpassing the fractional derivative: Concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011)MathSciNetMATHCrossRef Wang, J.L., Li, H.F.: Surpassing the fractional derivative: Concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179 (2019)MathSciNetMATHCrossRef Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179 (2019)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Sur, A., Pal, P., Mondal, S., Kanoria, M.: Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mech. 230, 1607 (2019)MATHCrossRef Sur, A., Pal, P., Mondal, S., Kanoria, M.: Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mech. 230, 1607 (2019)MATHCrossRef
14.
Zurück zum Zitat Ezzat, M.A., El-Bary, A.A.: Thermoelectric MHD with memory-dependent derivative heat transfer. Int. Commun. Heat Mass Transfer 75, 270 (2016)CrossRef Ezzat, M.A., El-Bary, A.A.: Thermoelectric MHD with memory-dependent derivative heat transfer. Int. Commun. Heat Mass Transfer 75, 270 (2016)CrossRef
15.
Zurück zum Zitat Li, Y., He, T.: A generalized thermoelastic diffusion problem with memory-dependent derivative. Math. Mech. Solids 24, 1438 (2018)MathSciNetMATHCrossRef Li, Y., He, T.: A generalized thermoelastic diffusion problem with memory-dependent derivative. Math. Mech. Solids 24, 1438 (2018)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Sun, W., Wang, J.: Reconstruct the heat conduction model with memory dependent derivative. Appl. Math. 9, 1072 (2018)CrossRef Sun, W., Wang, J.: Reconstruct the heat conduction model with memory dependent derivative. Appl. Math. 9, 1072 (2018)CrossRef
17.
Zurück zum Zitat Hendy, M. H., El-Attar, S. I., Ezzat, M. A.: On thermoelectric materials with memory-dependent derivative and subjected to a moving heat source, Microsyst. Technol.,26, 595 (2020), 15(5), 299 (1967) Hendy, M. H., El-Attar, S. I., Ezzat, M. A.: On thermoelectric materials with memory-dependent derivative and subjected to a moving heat source, Microsyst. Technol.,26, 595 (2020), 15(5), 299 (1967)
18.
Zurück zum Zitat Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91 (2003)MATHCrossRef Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91 (2003)MATHCrossRef
19.
Zurück zum Zitat Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71, 137 (2013)CrossRef Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71, 137 (2013)CrossRef
20.
Zurück zum Zitat Zhang, X.C., Myers, E.B., Sader, J.E., Roukes, M.L.: Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Lett. 13, 1528 (2013)CrossRef Zhang, X.C., Myers, E.B., Sader, J.E., Roukes, M.L.: Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Lett. 13, 1528 (2013)CrossRef
21.
Zurück zum Zitat Dennis, J.O., Ahmed, A.Y., Khir, M.H.: Fabrication and characterization of a CMOS-MEMS humidity. Sensors 15, 16674 (2015)CrossRef Dennis, J.O., Ahmed, A.Y., Khir, M.H.: Fabrication and characterization of a CMOS-MEMS humidity. Sensors 15, 16674 (2015)CrossRef
24.
Zurück zum Zitat Bagheri, R. Tadi Beni, Y.: On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams. J. Vibr. Control, 1077546320952225 (2020). Bagheri, R. Tadi Beni, Y.: On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams. J. Vibr. Control, 1077546320952225 (2020).
25.
Zurück zum Zitat Ebrahimi, N., Beni, Y.T.: Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos. Struct. 22(6), 1301–1336 (2016)CrossRef Ebrahimi, N., Beni, Y.T.: Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos. Struct. 22(6), 1301–1336 (2016)CrossRef
26.
Zurück zum Zitat Pinnola, F. P., Vaccaro, M. S., Barretta, R., Marotti de Sciarra, F.: Finite element method for stress-driven nonlocal beams, Eng. Anal. Boundary Elements 134, 22–34 (2022). Pinnola, F. P., Vaccaro, M. S., Barretta, R., Marotti de Sciarra, F.: Finite element method for stress-driven nonlocal beams, Eng. Anal. Boundary Elements 134, 22–34 (2022).
27.
Zurück zum Zitat Vaccaro, M. S., Marotti de Sciarra, F., Barretta, R.: On the regularity of curvature fields in stress-driven nonlocal elastic beams. Acta Mechanica 232(7), 2595–2603 (2021). Vaccaro, M. S., Marotti de Sciarra, F., Barretta, R.: On the regularity of curvature fields in stress-driven nonlocal elastic beams. Acta Mechanica 232(7), 2595–2603 (2021).
28.
Zurück zum Zitat Vaccaro, M. S., Pinnola, F. P., Marotti de Sciarra, F., Barretta, R.: Elastostatics of Bernoulli-Euler beams resting on displacement-driven nonlocal foundation. Nanomaterials 11(3), 573, 1–27 (2021). Vaccaro, M. S., Pinnola, F. P., Marotti de Sciarra, F., Barretta, R.: Elastostatics of Bernoulli-Euler beams resting on displacement-driven nonlocal foundation. Nanomaterials 11(3), 573, 1–27 (2021).
30.
Zurück zum Zitat Koochi, A., Goharimanesh, M.: Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: the energy balance method. Rep. Mech. Eng. 2(1), 41–50 (2021)CrossRef Koochi, A., Goharimanesh, M.: Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: the energy balance method. Rep. Mech. Eng. 2(1), 41–50 (2021)CrossRef
31.
Zurück zum Zitat Sedighi, H.M.: Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronaut. 95, 111–123 (2014)CrossRef Sedighi, H.M.: Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronaut. 95, 111–123 (2014)CrossRef
32.
Zurück zum Zitat Abro, K.A., Atangana, A., Khoso, A.R.: Dynamical behavior of fractionalized simply supported beam: an application of fractional operators to Bernoulli–Euler theory. Nonlinear Eng. 10(1), 231–239 (2021)CrossRef Abro, K.A., Atangana, A., Khoso, A.R.: Dynamical behavior of fractionalized simply supported beam: an application of fractional operators to Bernoulli–Euler theory. Nonlinear Eng. 10(1), 231–239 (2021)CrossRef
33.
Zurück zum Zitat Abouelregal, A.E., Sedighi, H.M., Malikan, M., Eremeyev, V.A.: Nonlocalized thermal behavior of rotating micromachined beams under dynamic and thermodynamic loads. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik (2021). https://doi.org/10.1002/zamm.202100310CrossRef Abouelregal, A.E., Sedighi, H.M., Malikan, M., Eremeyev, V.A.: Nonlocalized thermal behavior of rotating micromachined beams under dynamic and thermodynamic loads. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik (2021). https://​doi.​org/​10.​1002/​zamm.​202100310CrossRef
34.
Zurück zum Zitat Avlović, I.R., et al.: Dynamic behavior of two elastically connected nanobeams under a white noise process. Facta. Univ. Ser. Mech. Eng. 18(2), 219–227 (2020) Avlović, I.R., et al.: Dynamic behavior of two elastically connected nanobeams under a white noise process. Facta. Univ. Ser. Mech. Eng. 18(2), 219–227 (2020)
35.
Zurück zum Zitat Barretta, R., Fazelzadeh, S., Feo, L., Ghavanloo, E., Luciano, R.: Nonlocal inflected nano-beams: a stress-driven approach of bi-Helmholtz type. Compos. Struct. 200, 239–245 (2018)CrossRef Barretta, R., Fazelzadeh, S., Feo, L., Ghavanloo, E., Luciano, R.: Nonlocal inflected nano-beams: a stress-driven approach of bi-Helmholtz type. Compos. Struct. 200, 239–245 (2018)CrossRef
36.
Zurück zum Zitat Tashakorian, M., Ghavanloo, E., Fazelzadeh, S., Hodges, D.: Nonlocal fully intrinsic equations for free vibration of Euler–Bernoulli beams with constitutive boundary conditions. Acta Mech. 229, 3279–3292 (2018)MathSciNetMATHCrossRef Tashakorian, M., Ghavanloo, E., Fazelzadeh, S., Hodges, D.: Nonlocal fully intrinsic equations for free vibration of Euler–Bernoulli beams with constitutive boundary conditions. Acta Mech. 229, 3279–3292 (2018)MathSciNetMATHCrossRef
37.
38.
Zurück zum Zitat Abo-Dahab, S.M., Abouelregal, A.E.: Investigation of the vibration of micro-beam resonators induced by a harmonically varying heat. J. Comput. Theor. Nanosci. 12, 924 (2015)CrossRef Abo-Dahab, S.M., Abouelregal, A.E.: Investigation of the vibration of micro-beam resonators induced by a harmonically varying heat. J. Comput. Theor. Nanosci. 12, 924 (2015)CrossRef
39.
Zurück zum Zitat Abouelregal, A.E., Marin, M.: The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12(8), 1276 (2020)CrossRef Abouelregal, A.E., Marin, M.: The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12(8), 1276 (2020)CrossRef
40.
Zurück zum Zitat Abouelregal, A.E.: Response of thermoelastic microbeams to a periodic external transverse excitation based on MCS theory. Microsyst. Tech. 24, 1925–1933 (2018)CrossRef Abouelregal, A.E.: Response of thermoelastic microbeams to a periodic external transverse excitation based on MCS theory. Microsyst. Tech. 24, 1925–1933 (2018)CrossRef
41.
Zurück zum Zitat Rafii-Tabar, H., Ghavanloo, E., Fazelzadeh, S.: Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)MathSciNetCrossRef Rafii-Tabar, H., Ghavanloo, E., Fazelzadeh, S.: Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)MathSciNetCrossRef
42.
Zurück zum Zitat Shafiei, N., Kazemi, M., Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12 (2016)MathSciNetMATHCrossRef Shafiei, N., Kazemi, M., Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12 (2016)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Lenci, S., Clementi, F.: Flexural wave propagation in infinite beams on a unilateral elastic foundation. Nonlinear Dyn. 99, 721–735 (2020)MATHCrossRef Lenci, S., Clementi, F.: Flexural wave propagation in infinite beams on a unilateral elastic foundation. Nonlinear Dyn. 99, 721–735 (2020)MATHCrossRef
44.
Zurück zum Zitat Rahmatnezhad, K., Zarastvand, M.R., Talebitooti, R.: Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature. Compos. Struct. 276, 114557 (2021)CrossRef Rahmatnezhad, K., Zarastvand, M.R., Talebitooti, R.: Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature. Compos. Struct. 276, 114557 (2021)CrossRef
45.
Zurück zum Zitat Naidu, N.R., Rao, G.V.: Stability behaviour of uniform column on a class of two-parameter elastic foundation. Comput. Struct. 57, 551 (1995)CrossRef Naidu, N.R., Rao, G.V.: Stability behaviour of uniform column on a class of two-parameter elastic foundation. Comput. Struct. 57, 551 (1995)CrossRef
46.
Zurück zum Zitat Kocakaplan, S., Tassoulas, J.L.: Wave propagation in initially-stressed elastic rods. J. Sound Vibr. 443, 293 (2019)CrossRef Kocakaplan, S., Tassoulas, J.L.: Wave propagation in initially-stressed elastic rods. J. Sound Vibr. 443, 293 (2019)CrossRef
47.
Zurück zum Zitat Alghamdi, N.A.: The vibration of nano-beam subjected to thermal shock and moving heat source with constant speed. J. Nano Res. 61, 163 (2020)CrossRef Alghamdi, N.A.: The vibration of nano-beam subjected to thermal shock and moving heat source with constant speed. J. Nano Res. 61, 163 (2020)CrossRef
48.
Zurück zum Zitat Wang, C.M., Zhang, Y.Y., Kitipornchai, S.: Vibration of initially stressed micro- and nano-beams. Int. J. Struct. Stab. Dyn. 07, 555 (2007)MathSciNetMATHCrossRef Wang, C.M., Zhang, Y.Y., Kitipornchai, S.: Vibration of initially stressed micro- and nano-beams. Int. J. Struct. Stab. Dyn. 07, 555 (2007)MathSciNetMATHCrossRef
49.
50.
Zurück zum Zitat Eftekhari, S.A., Jafari, A.A.: A new mixed finite element–differential quadrature formulation for forced vibration of beams carrying moving loads. J. Appl. Mech. 78, 11020 (2011)CrossRef Eftekhari, S.A., Jafari, A.A.: A new mixed finite element–differential quadrature formulation for forced vibration of beams carrying moving loads. J. Appl. Mech. 78, 11020 (2011)CrossRef
52.
Zurück zum Zitat Eringen, A.C.: Theory of nonlocal thermoelasticity. Int J Eng Sci. 12, 1063–1077 (1974)MATHCrossRef Eringen, A.C.: Theory of nonlocal thermoelasticity. Int J Eng Sci. 12, 1063–1077 (1974)MATHCrossRef
53.
Zurück zum Zitat Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int J Eng Sci. 22, 1113–1121 (1984)MATHCrossRef Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int J Eng Sci. 22, 1113–1121 (1984)MATHCrossRef
54.
Zurück zum Zitat Altan, B.S.: Uniqueness in the linear theory of nonlocal elasticity. Bull Tech Univ Istanb. 37, 373–385 (1984)MathSciNetMATH Altan, B.S.: Uniqueness in the linear theory of nonlocal elasticity. Bull Tech Univ Istanb. 37, 373–385 (1984)MathSciNetMATH
55.
Zurück zum Zitat Eringen, A.C.: Memory-dependent nonlocal electromagnetic elastic solids and super-conductivity. J Math Phys. 32, 787–796 (1991)MathSciNetMATHCrossRef Eringen, A.C.: Memory-dependent nonlocal electromagnetic elastic solids and super-conductivity. J Math Phys. 32, 787–796 (1991)MathSciNetMATHCrossRef
56.
Zurück zum Zitat Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448 (1962)MathSciNetMATHCrossRef Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448 (1962)MathSciNetMATHCrossRef
57.
Zurück zum Zitat Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)MATHCrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)MATHCrossRef
59.
Zurück zum Zitat Lim, C.W., Zhang, G., Reddy, J.N.: A Higher-order nonlocal elasticity and strain gradient theory and its Applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)MathSciNetMATHCrossRef Lim, C.W., Zhang, G., Reddy, J.N.: A Higher-order nonlocal elasticity and strain gradient theory and its Applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)MathSciNetMATHCrossRef
60.
Zurück zum Zitat Lam, D.C.C., Yang, F., Chong, A.C.M.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)MATHCrossRef Lam, D.C.C., Yang, F., Chong, A.C.M.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)MATHCrossRef
61.
Zurück zum Zitat Lim, C.W., Wang, C.M.: Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanotubes. J. Appl. Phys. 101, 054312 (2007)CrossRef Lim, C.W., Wang, C.M.: Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanotubes. J. Appl. Phys. 101, 054312 (2007)CrossRef
62.
Zurück zum Zitat Aifantis, E.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)MATHCrossRef Aifantis, E.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)MATHCrossRef
63.
Zurück zum Zitat Yang, F., Chong, A.C.M., Lam, D.C.C.: Couple stress based strain gradient theory for elasticity. Int. J. Solids 39, 2731–2743 (2002)MATHCrossRef Yang, F., Chong, A.C.M., Lam, D.C.C.: Couple stress based strain gradient theory for elasticity. Int. J. Solids 39, 2731–2743 (2002)MATHCrossRef
64.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)MATHCrossRef Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)MATHCrossRef
65.
Zurück zum Zitat Caputo, M.: Linear Models of Dissipation whose Q is almost Frequency Independent—II. Geophys. J. Int. 13, 529 (1967)CrossRef Caputo, M.: Linear Models of Dissipation whose Q is almost Frequency Independent—II. Geophys. J. Int. 13, 529 (1967)CrossRef
66.
Zurück zum Zitat Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123 (2014)MathSciNetMATHCrossRef Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123 (2014)MathSciNetMATHCrossRef
67.
Zurück zum Zitat Narendar, S., Gopalakrishnan, S.: Nonlocal wave propagation in rotating nanotube. Results Phys. 1, 17–25 (2011)CrossRef Narendar, S., Gopalakrishnan, S.: Nonlocal wave propagation in rotating nanotube. Results Phys. 1, 17–25 (2011)CrossRef
68.
Zurück zum Zitat Ebrahimi, F., Dabbagh, A.: Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory. J. Electromagn. Waves Appl. 32(2), 138 (2018)CrossRef Ebrahimi, F., Dabbagh, A.: Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory. J. Electromagn. Waves Appl. 32(2), 138 (2018)CrossRef
69.
Zurück zum Zitat Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York (1992) Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York (1992)
70.
Zurück zum Zitat Noda, N.: Thermal stress in material with temperature dependent properties. Thermal Stresses Appl. Mech. Rev. 44, 383 (1991)CrossRef Noda, N.: Thermal stress in material with temperature dependent properties. Thermal Stresses Appl. Mech. Rev. 44, 383 (1991)CrossRef
71.
Zurück zum Zitat Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)CrossRef Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)CrossRef
72.
Zurück zum Zitat Berman, R.: The thermal conductivity of dielectric solids at low temperatures. Adv. Phys. 2(5), 103 (1953)CrossRef Berman, R.: The thermal conductivity of dielectric solids at low temperatures. Adv. Phys. 2(5), 103 (1953)CrossRef
73.
Zurück zum Zitat Sharma, J.N., Kaur, R.: Response of anisotropic thermoelastic micro-beam resonators under dynamic loads. Appl. Math. Model. 39, 2929 (2015)MathSciNetMATHCrossRef Sharma, J.N., Kaur, R.: Response of anisotropic thermoelastic micro-beam resonators under dynamic loads. Appl. Math. Model. 39, 2929 (2015)MathSciNetMATHCrossRef
74.
Zurück zum Zitat Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace Transform, J. Comput. Appl. Math., 1(10): 113(1984). Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace Transform, J. Comput. Appl. Math., 1(10): 113(1984).
76.
Zurück zum Zitat Yahya, A.M.H., Abouelregal, A.E., Khalil, K.M., Atta, D.: Thermoelastic responses in rotating nanobeams with variable physical properties due to periodic pulse heating. Case Stud. Thermal Eng. 28, 101443 (2021)CrossRef Yahya, A.M.H., Abouelregal, A.E., Khalil, K.M., Atta, D.: Thermoelastic responses in rotating nanobeams with variable physical properties due to periodic pulse heating. Case Stud. Thermal Eng. 28, 101443 (2021)CrossRef
77.
78.
Zurück zum Zitat Abouelregal, A.E., Ahmad, H., Nofal, T.A., Abu-Zinadah, H.: Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Mod. Phys. Lett. B 35(18), 2150297 (2021)MathSciNetCrossRef Abouelregal, A.E., Ahmad, H., Nofal, T.A., Abu-Zinadah, H.: Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Mod. Phys. Lett. B 35(18), 2150297 (2021)MathSciNetCrossRef
79.
Zurück zum Zitat Ebrahimi, F., Mahmoodi, F., Barati, M.R.: Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory. Adv. Mater. Res. 6(3), 279–301 (2017) Ebrahimi, F., Mahmoodi, F., Barati, M.R.: Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory. Adv. Mater. Res. 6(3), 279–301 (2017)
Metadaten
Titel
Vibrational behavior of thermoelastic rotating nanobeams with variable thermal properties based on memory-dependent derivative of heat conduction model
verfasst von
Ahmed E. Abouelregal
Doaa Atta
Hamid M. Sedighi
Publikationsdatum
10.02.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 1/2023
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02110-8

Weitere Artikel der Ausgabe 1/2023

Archive of Applied Mechanics 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.