Skip to main content
Erschienen in: Archive of Applied Mechanics 12/2022

19.09.2022 | Original

Nonlinear vibration and dynamic performance analysis of the inerter-based multi-directional vibration isolator

verfasst von: Yong Wang, Peili Wang, Haodong Meng, Li-Qun Chen

Erschienen in: Archive of Applied Mechanics | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Motivated by the demand of improving the multi-directional vibration dynamic performance, an inerter-based multi-directional (IMD) vibration isolator is proposed in this paper, which is composed of the inerter, damper and spring structures in multiple directions. The dynamic equation of the IMD vibration isolator is established using the Lagrange theory, its dynamic response under base harmonic excitation is obtained using the harmonic balance method and pseudo-arc-length method, and the stability of the dynamic response is considered. The dynamic performance of the IMD vibration isolator under harmonic and shock excitations is studied and compared with those of the conventional multi-directional (MD) vibration isolator consist of the damper and spring structure, and the effect of structural parameters on its dynamic performance is investigated in detail. The results show that the IMD vibration isolator has nonlinear inertial, damping and stiffness characteristics, and it further reduces the dynamic displacement and absolute displacement transmissibility peaks, widens the isolation frequency band than the MD vibration isolator and also has better shock performance in the middle severity parameter range. In order to obtain better isolation and shock performance, the vertical and horizontal inertance-to-mass ratios are chosen as larger values, and the stiffness ratio and the horizontal spring compression ratio are chosen as smaller values. Therefore, the design of the proposed IMD vibration isolator exhibits the advantages of applying the inerter and provides excellent isolation and shock performance in multiple directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)CrossRef Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)CrossRef
2.
Zurück zum Zitat Cimellaro, G.P., Domaneschi, M., Warn, G.: Three-dimensional base isolation using vertical negative stiffness devices. J. Earthq. Eng. 24(12), 2004–2032 (2020)CrossRef Cimellaro, G.P., Domaneschi, M., Warn, G.: Three-dimensional base isolation using vertical negative stiffness devices. J. Earthq. Eng. 24(12), 2004–2032 (2020)CrossRef
3.
Zurück zum Zitat Xu, Z.D., Chen, Z.H., Huang, X.H., Zhou, C.Y., Hu, Z.W., Yang, Q.H., Ga, P.P.: Recent advances in multi-dimensional vibration mitigation materials and devices. Front. Mater. 6, 1–14 (2019)CrossRef Xu, Z.D., Chen, Z.H., Huang, X.H., Zhou, C.Y., Hu, Z.W., Yang, Q.H., Ga, P.P.: Recent advances in multi-dimensional vibration mitigation materials and devices. Front. Mater. 6, 1–14 (2019)CrossRef
4.
Zurück zum Zitat Sun, X.T., Jing, X.J.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Proc. 62, 149–163 (2015)CrossRef Sun, X.T., Jing, X.J.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Proc. 62, 149–163 (2015)CrossRef
5.
Zurück zum Zitat Xu, J., Sun, X.T.: A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)CrossRef Xu, J., Sun, X.T.: A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)CrossRef
6.
Zurück zum Zitat Wu, Z.J., Jing, X.J., Sun, B., Li, F.M.: A 6DOF passive vibration isolator using X-shape supporting structures. J. Sound Vib. 380, 90–111 (2016)CrossRef Wu, Z.J., Jing, X.J., Sun, B., Li, F.M.: A 6DOF passive vibration isolator using X-shape supporting structures. J. Sound Vib. 380, 90–111 (2016)CrossRef
7.
Zurück zum Zitat Zhou, J.X., Xiao, Q.Y., Xu, D.L., Ouyang, H.J., Li, Y.L.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017)CrossRef Zhou, J.X., Xiao, Q.Y., Xu, D.L., Ouyang, H.J., Li, Y.L.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017)CrossRef
8.
Zurück zum Zitat Dong, G.X., Zhang, X.N., Luo, Y.J., Zhang, Y.H., Xie, S.L.: Analytical study of the low frequency multi-direction isolator with high-static-low-dynamic stiffness struts and spatial pendulum. Mech. Syst. Signal Proc. 110, 521–539 (2018)CrossRef Dong, G.X., Zhang, X.N., Luo, Y.J., Zhang, Y.H., Xie, S.L.: Analytical study of the low frequency multi-direction isolator with high-static-low-dynamic stiffness struts and spatial pendulum. Mech. Syst. Signal Proc. 110, 521–539 (2018)CrossRef
9.
Zurück zum Zitat Lu, Z.Q., Wu, D., Ding, H., Chen, L.Q.: Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Appl. Math. Model. 89, 249–267 (2021)MathSciNetCrossRefMATH Lu, Z.Q., Wu, D., Ding, H., Chen, L.Q.: Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Appl. Math. Model. 89, 249–267 (2021)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Chai, Y.Y., Jing, X.J., Guo, Y.Q.: A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property. Mech. Syst. Signal Proc. 168, 108651 (2022)CrossRef Chai, Y.Y., Jing, X.J., Guo, Y.Q.: A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property. Mech. Syst. Signal Proc. 168, 108651 (2022)CrossRef
11.
Zurück zum Zitat Yang, T., Cao, Q.J.: Modeling and analysis of a novel multi-directional micro-vibration isolator with spring suspension struts. Arch. Appl. Mech. 92(3), 801–819 (2022)MathSciNetCrossRef Yang, T., Cao, Q.J.: Modeling and analysis of a novel multi-directional micro-vibration isolator with spring suspension struts. Arch. Appl. Mech. 92(3), 801–819 (2022)MathSciNetCrossRef
13.
Zurück zum Zitat Wagg, D.J.: A review of the mechanical inerter: historical context, physical realisations and nonlinear applications. Nonlinear Dyn. 104(1), 13–34 (2021)MathSciNetCrossRef Wagg, D.J.: A review of the mechanical inerter: historical context, physical realisations and nonlinear applications. Nonlinear Dyn. 104(1), 13–34 (2021)MathSciNetCrossRef
14.
Zurück zum Zitat Hu, Y.L., Chen, M.Z.Q., Shu, Z.: Passive vehicle suspensions employing inerters with multiple performance requirements. J. Sound Vib. 333(8), 2212–2225 (2014)CrossRef Hu, Y.L., Chen, M.Z.Q., Shu, Z.: Passive vehicle suspensions employing inerters with multiple performance requirements. J. Sound Vib. 333(8), 2212–2225 (2014)CrossRef
15.
Zurück zum Zitat Qin, Y.C., Wang, Z.F., Yuan, K., Zhang, Y.B.: Comprehensive analysis and optimization of dynamic vibration-absorbing structures for electric vehicles driven by in-wheel motors. Automot. Innov. 2(4), 254–262 (2019)CrossRef Qin, Y.C., Wang, Z.F., Yuan, K., Zhang, Y.B.: Comprehensive analysis and optimization of dynamic vibration-absorbing structures for electric vehicles driven by in-wheel motors. Automot. Innov. 2(4), 254–262 (2019)CrossRef
16.
Zurück zum Zitat Wang, Y., Ding, H., Chen, L.Q.: Averaging analysis on a semi-active inerter-based suspension system with relative-acceleration-relative-velocity control. J. Vib. Control 26(13–14), 1199–1215 (2020)MathSciNetCrossRef Wang, Y., Ding, H., Chen, L.Q.: Averaging analysis on a semi-active inerter-based suspension system with relative-acceleration-relative-velocity control. J. Vib. Control 26(13–14), 1199–1215 (2020)MathSciNetCrossRef
17.
Zurück zum Zitat Li, Y., Howcroft, C., Neild, S.A., Jiang, J.Z.: Using continuation analysis to identify shimmy-suppression devices for an aircraft main landing gear. J. Sound Vib. 408, 234–251 (2017)CrossRef Li, Y., Howcroft, C., Neild, S.A., Jiang, J.Z.: Using continuation analysis to identify shimmy-suppression devices for an aircraft main landing gear. J. Sound Vib. 408, 234–251 (2017)CrossRef
18.
Zurück zum Zitat Zhang, S.Y., Jiang, J.Z., Neild, S.A.: Optimal configurations for a linear vibration suppression device in a multi-storey building. Struct. Control Health 24(3), e1887 (2017)CrossRef Zhang, S.Y., Jiang, J.Z., Neild, S.A.: Optimal configurations for a linear vibration suppression device in a multi-storey building. Struct. Control Health 24(3), e1887 (2017)CrossRef
19.
Zurück zum Zitat Wang, Z.X., Giaralis, A.: Top-storey softening for enhanced mitigation of vortex shedding induced vibrations in wind-excited optimal tuned mass damper inerter (TMDI)-equipped tall buildings. J. Struct. Eng. 147(1), 04020283 (2021)CrossRef Wang, Z.X., Giaralis, A.: Top-storey softening for enhanced mitigation of vortex shedding induced vibrations in wind-excited optimal tuned mass damper inerter (TMDI)-equipped tall buildings. J. Struct. Eng. 147(1), 04020283 (2021)CrossRef
20.
Zurück zum Zitat Zhao, Z.P., Chen, Q.J., Zhang, R.F., Ren, X.S., Hu, X.Y.: Variable friction-tuned viscous mass damper and power-flow-based control. Struct. Control Hlth. 29(3), e2890 (2022)CrossRef Zhao, Z.P., Chen, Q.J., Zhang, R.F., Ren, X.S., Hu, X.Y.: Variable friction-tuned viscous mass damper and power-flow-based control. Struct. Control Hlth. 29(3), e2890 (2022)CrossRef
21.
Zurück zum Zitat Hu, Y., Chen, M.Z.Q.: Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci. 99, 297–307 (2015)CrossRef Hu, Y., Chen, M.Z.Q.: Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci. 99, 297–307 (2015)CrossRef
22.
Zurück zum Zitat Barredoa, E., Blancoa, A., Colína, J., Penagosa, V.M., Abúndeza, A., Velaa, L.G., Mezaa, V., Cruz, R.H., Mayénb, J.: Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers. Int. J. Mech. Sci. 144, 41–53 (2018)CrossRef Barredoa, E., Blancoa, A., Colína, J., Penagosa, V.M., Abúndeza, A., Velaa, L.G., Mezaa, V., Cruz, R.H., Mayénb, J.: Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers. Int. J. Mech. Sci. 144, 41–53 (2018)CrossRef
23.
Zurück zum Zitat Shi, B.Y., Yang, J., Jiang, J.Z.: Tuning methods for tuned inerter dampers coupled to nonlinear primary systems. Nonlinear Dyn. 107, 1663–1685 (2022)CrossRef Shi, B.Y., Yang, J., Jiang, J.Z.: Tuning methods for tuned inerter dampers coupled to nonlinear primary systems. Nonlinear Dyn. 107, 1663–1685 (2022)CrossRef
24.
Zurück zum Zitat Lewis, T.D., Jiang, J.Z., Neild, S.A., Gong, C., Iwnicki, S.D.: Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles. Vehicle Syst. Dyn. 58(3), 472–493 (2020)CrossRef Lewis, T.D., Jiang, J.Z., Neild, S.A., Gong, C., Iwnicki, S.D.: Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles. Vehicle Syst. Dyn. 58(3), 472–493 (2020)CrossRef
26.
Zurück zum Zitat Liu, Y.H., Yang, J., Yi, X.S., Chronopoulos, D.: Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters. J. Appl. Phy. 131(10), 105103 (2022)CrossRef Liu, Y.H., Yang, J., Yi, X.S., Chronopoulos, D.: Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters. J. Appl. Phy. 131(10), 105103 (2022)CrossRef
27.
Zurück zum Zitat Hu, Y., Chen, M.Z.Q., Shu, Z., Huang, L.: Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. J. Sound Vib. 346, 17–36 (2015)CrossRef Hu, Y., Chen, M.Z.Q., Shu, Z., Huang, L.: Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. J. Sound Vib. 346, 17–36 (2015)CrossRef
28.
Zurück zum Zitat Wang, Y., Wang, R.C., Meng, H.D.: Analysis and comparison of the dynamic performance of one-stage inerter-based and linear vibration isolators. Int. J. Appl. Mech. 10(1), 1850005 (2018)CrossRef Wang, Y., Wang, R.C., Meng, H.D.: Analysis and comparison of the dynamic performance of one-stage inerter-based and linear vibration isolators. Int. J. Appl. Mech. 10(1), 1850005 (2018)CrossRef
29.
Zurück zum Zitat Wang, Y., Meng, H.D., Zhang, B.Y., Wang, R.C.: Analytical research on the dynamic performance of semi-active inerter-based vibration isolator with acceleration-velocity-based control strategy. Struct. Control Health 26(4), e2336 (2019)CrossRef Wang, Y., Meng, H.D., Zhang, B.Y., Wang, R.C.: Analytical research on the dynamic performance of semi-active inerter-based vibration isolator with acceleration-velocity-based control strategy. Struct. Control Health 26(4), e2336 (2019)CrossRef
30.
Zurück zum Zitat Čakmak, D., Wolf, H., Božić, Ž, Jokić, M.: Optimization of an inerter-based vibration isolation system and helical spring fatigue life assessment. Arch. Appl. Mech. 89(5), 859–872 (2019)CrossRef Čakmak, D., Wolf, H., Božić, Ž, Jokić, M.: Optimization of an inerter-based vibration isolation system and helical spring fatigue life assessment. Arch. Appl. Mech. 89(5), 859–872 (2019)CrossRef
31.
Zurück zum Zitat Čakmak, D., Tomičević, D.Z., Wolf, H., Božić, Ž: H2 optimization and numerical study of inerter-based vibration isolation system helical spring fatigue life. Arch. Appl. Mech. 89(7), 1221–1242 (2019)CrossRef Čakmak, D., Tomičević, D.Z., Wolf, H., Božić, Ž: H2 optimization and numerical study of inerter-based vibration isolation system helical spring fatigue life. Arch. Appl. Mech. 89(7), 1221–1242 (2019)CrossRef
32.
Zurück zum Zitat Dai, J.G., Wang, Y., Wei, M.X., Zhang, W.W., Zhu, J.H., Jin, H., Jiang, C.: Dynamic characteristic analysis of the inerter-based piecewise vibration isolator under base excitation. Acta. Mech. 233(2), 513–533 (2022)MathSciNetCrossRefMATH Dai, J.G., Wang, Y., Wei, M.X., Zhang, W.W., Zhu, J.H., Jin, H., Jiang, C.: Dynamic characteristic analysis of the inerter-based piecewise vibration isolator under base excitation. Acta. Mech. 233(2), 513–533 (2022)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Moraes, F.D.H., Silveira, M., Gonçalves, P.J.P.: On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dyn. 93(3), 1325–1340 (2018)CrossRef Moraes, F.D.H., Silveira, M., Gonçalves, P.J.P.: On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dyn. 93(3), 1325–1340 (2018)CrossRef
34.
Zurück zum Zitat Wang, Y., Wang, R.C., Meng, H.D., Zhang, B.Y.: An investigation of the dynamic performance of lateral inerter-based vibration isolator with geometrical nonlinearity. Arch. Appl. Mech. 89(9), 1953–1972 (2019)CrossRef Wang, Y., Wang, R.C., Meng, H.D., Zhang, B.Y.: An investigation of the dynamic performance of lateral inerter-based vibration isolator with geometrical nonlinearity. Arch. Appl. Mech. 89(9), 1953–1972 (2019)CrossRef
35.
Zurück zum Zitat Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99(3), 1823–1839 (2020)CrossRef Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99(3), 1823–1839 (2020)CrossRef
36.
Zurück zum Zitat Wang, Y., Li, H.X., Cheng, C., Ding, H., Chen, L.Q.: Dynamic performance analysis of a mixed-connected inerter-based quasi-zero stiffness vibration isolator. Struct. Control Health 27(10), e2604 (2020) Wang, Y., Li, H.X., Cheng, C., Ding, H., Chen, L.Q.: Dynamic performance analysis of a mixed-connected inerter-based quasi-zero stiffness vibration isolator. Struct. Control Health 27(10), e2604 (2020)
38.
Zurück zum Zitat Dong, Z., Shi, B.Y., Yang, J., Li, T.Y.: Suppression of vibration transmission in coupled systems with an inerter-based nonlinear joint. Nonlinear Dyn. 107, 1637–1662 (2022)CrossRef Dong, Z., Shi, B.Y., Yang, J., Li, T.Y.: Suppression of vibration transmission in coupled systems with an inerter-based nonlinear joint. Nonlinear Dyn. 107, 1637–1662 (2022)CrossRef
40.
Zurück zum Zitat Zou, W., Cheng, C., Ma, R., Hu, Y., Wang, W.P.: Performance analysis of a quasi-zero stiffness vibration isolation system with scissor-like structures. Arch. Appl. Mech. 91(1), 117–133 (2021)CrossRef Zou, W., Cheng, C., Ma, R., Hu, Y., Wang, W.P.: Performance analysis of a quasi-zero stiffness vibration isolation system with scissor-like structures. Arch. Appl. Mech. 91(1), 117–133 (2021)CrossRef
41.
Zurück zum Zitat Wu, W.L., Tang, B.: Analysis of a bio-inspired multistage nonlinear vibration isolator: an elliptic harmonic balance approach. Arch. Appl. Mech. 92(1), 183–198 (2022)CrossRef Wu, W.L., Tang, B.: Analysis of a bio-inspired multistage nonlinear vibration isolator: an elliptic harmonic balance approach. Arch. Appl. Mech. 92(1), 183–198 (2022)CrossRef
42.
Zurück zum Zitat Wang, X., Ma, T.B., Ren, H.L., Ning, J.G.: A local pseudo arc-length method for hyperbolic conservation laws. Acta Mech. Sin. 30(6), 956–965 (2014)MathSciNetCrossRefMATH Wang, X., Ma, T.B., Ren, H.L., Ning, J.G.: A local pseudo arc-length method for hyperbolic conservation laws. Acta Mech. Sin. 30(6), 956–965 (2014)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Silveira, M., Pontes, B.R., Balthazar, J.M.: Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J. Sound Vib. 333(7), 2114–2129 (2014)CrossRef Silveira, M., Pontes, B.R., Balthazar, J.M.: Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J. Sound Vib. 333(7), 2114–2129 (2014)CrossRef
Metadaten
Titel
Nonlinear vibration and dynamic performance analysis of the inerter-based multi-directional vibration isolator
verfasst von
Yong Wang
Peili Wang
Haodong Meng
Li-Qun Chen
Publikationsdatum
19.09.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 12/2022
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02252-9

Weitere Artikel der Ausgabe 12/2022

Archive of Applied Mechanics 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.