Skip to main content
Erschienen in: Computational Mechanics 3/2013

01.09.2013 | Original Paper

A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid

verfasst von: M. S. Shadloo, A. Rahmat, M. Yildiz

Erschienen in: Computational Mechanics | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we have presented a 2D Lagrangian two-phase numerical model to study the deformation of a droplet suspended in a quiescent fluid subjected to the combined effects of viscous, surface tension and electric field forces. The electrostatics phenomena are coupled to hydrodynamics through the solution of a set of Maxwell equations. The relevant Maxwell equations and associated interface conditions are simplified relying on the assumptions of the so-called leaky dielectric model. All governing equations and the pertinent jump and boundary conditions are discretized in space using the incompressible Smoothed Particle Hydrodynamics method with improved interface and boundary treatments. Upon imposing constant electrical potentials to upper and lower horizontal boundaries, the droplet starts acquiring either prolate or oblate shape, and shows rather different flow patterns within itself and in its vicinity depending on the ratios of the electrical permittivities and conductivities of the constituent phases. The effects of the strength of the applied electric field, permittivity, surface tension, and the initial droplet radius on the droplet deformation parameter have been investigated in detail. Numerical results are validated by two highly credential analytical results which have been frequently cited in the literature. The numerically and analytically calculated droplet deformation parameters show good agreement for small oblate and prolate deformations. However, for some higher values of the droplet deformation parameter, numerical results overestimate the droplet deformation parameter. This situation was also reported in literature and is due to the assumption made in both theories, which is that the droplet deformation is rather small, and hence the droplet remains almost circular. Moreover, the flow circulations and their corresponding velocities in the inner and outer fluids are in agreement with theories.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Eow J, Ghadiri M (2003) Motion, deformation and break-up of aqueous drops in oils under high electric field strengths. Chem Eng Process 42(4):259–272CrossRef Eow J, Ghadiri M (2003) Motion, deformation and break-up of aqueous drops in oils under high electric field strengths. Chem Eng Process 42(4):259–272CrossRef
2.
Zurück zum Zitat Welch S, Biswas G (2007) Direct simulation of film boiling including electrohydrodynamic forces. Phys Fluids 19:012106 Welch S, Biswas G (2007) Direct simulation of film boiling including electrohydrodynamic forces. Phys Fluids 19:012106
3.
Zurück zum Zitat Xie J, Lim L, Phua Y, Hua J, Wang C (2006) Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci 302(1):103–112 Xie J, Lim L, Phua Y, Hua J, Wang C (2006) Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci 302(1):103–112
4.
Zurück zum Zitat Torza S, Cox R, Mason S (1971) Electrohydrodynamic deformation and burst of liquid drops. Philosophical transactions of the royal society of London. Series A. Math Phys Sci 269(1198):295–319CrossRef Torza S, Cox R, Mason S (1971) Electrohydrodynamic deformation and burst of liquid drops. Philosophical transactions of the royal society of London. Series A. Math Phys Sci 269(1198):295–319CrossRef
5.
Zurück zum Zitat Lac E, Homsy G (2007) Axisymmetric deformation and stability of a viscous drop in a steady electric field. J Fluid Mech 590:239–264MathSciNetMATHCrossRef Lac E, Homsy G (2007) Axisymmetric deformation and stability of a viscous drop in a steady electric field. J Fluid Mech 590:239–264MathSciNetMATHCrossRef
6.
Zurück zum Zitat Hua J, Lou J (2007) Numerical simulation of bubble rising in viscous liquid. J Comput Phys 222(2):769–795MATHCrossRef Hua J, Lou J (2007) Numerical simulation of bubble rising in viscous liquid. J Comput Phys 222(2):769–795MATHCrossRef
7.
Zurück zum Zitat Hua J, Lim L, Wang C (2008) Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys Fluids 20:113302CrossRef Hua J, Lim L, Wang C (2008) Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys Fluids 20:113302CrossRef
8.
Zurück zum Zitat Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S, Delgado A (2007) Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J Comput Phys 227(2):1267–1285MathSciNetMATHCrossRef Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S, Delgado A (2007) Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J Comput Phys 227(2):1267–1285MathSciNetMATHCrossRef
9.
Zurück zum Zitat Ha J, Yang S (2000) Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid. Phys Fluids 12:764MATHCrossRef Ha J, Yang S (2000) Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid. Phys Fluids 12:764MATHCrossRef
10.
11.
Zurück zum Zitat Rust A, Manga M (2002) Effects of bubble deformation on the viscosity of dilute suspensions. J Non-Newton Fluid Mech 104(1): 53–63 Rust A, Manga M (2002) Effects of bubble deformation on the viscosity of dilute suspensions. J Non-Newton Fluid Mech 104(1): 53–63
13.
Zurück zum Zitat Feng J, Scott T (1996) A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J Fluid Mech 311(1):289–326MATHCrossRef Feng J, Scott T (1996) A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J Fluid Mech 311(1):289–326MATHCrossRef
14.
Zurück zum Zitat Shadloo MS (2013) Improved multiphase smoothed patricle hydrodynamics. Ph.D. thesis, Sabanci University Shadloo MS (2013) Improved multiphase smoothed patricle hydrodynamics. Ph.D. thesis, Sabanci University
15.
Zurück zum Zitat Eringen A, Maugin G (1990) Electrodynamics of continua, vol. 1. Springer, New YorkCrossRef Eringen A, Maugin G (1990) Electrodynamics of continua, vol. 1. Springer, New YorkCrossRef
16.
Zurück zum Zitat Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension* 1. J Comput Phys 100(2):335–354 Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension* 1. J Comput Phys 100(2):335–354
17.
Zurück zum Zitat Shadloo MS, Zainali A, Yildiz M (2012) Simulation of single mode Rayleigh–Taylor instability by SPH method. Computational Mechanics pp. 1–17. doi:10.1007/s00466-012-0746-2 Shadloo MS, Zainali A, Yildiz M (2012) Simulation of single mode Rayleigh–Taylor instability by SPH method. Computational Mechanics pp. 1–17. doi:10.​1007/​s00466-012-0746-2
18.
Zurück zum Zitat Zainali A, Tofighi N, Shadloo MS, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113 Zainali A, Tofighi N, Shadloo MS, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113
19.
Zurück zum Zitat Saville D (1997) Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu Rev Fluid Mech 29(1):27–64MathSciNetCrossRef Saville D (1997) Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu Rev Fluid Mech 29(1):27–64MathSciNetCrossRef
20.
Zurück zum Zitat Melcher J, Taylor G (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1(1): 111–146 Melcher J, Taylor G (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1(1): 111–146
21.
Zurück zum Zitat Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Notices Royal Astron Soc 181:375–389MATH Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Notices Royal Astron Soc 181:375–389MATH
22.
Zurück zum Zitat Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRef Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRef
23.
Zurück zum Zitat Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Methods Eng 77(10): 1416–1438 Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Methods Eng 77(10): 1416–1438
24.
Zurück zum Zitat Shadloo MS, Zainali A, Sadek S, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9):1008–1020 Shadloo MS, Zainali A, Sadek S, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9):1008–1020
25.
Zurück zum Zitat Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Res 26(7):787–800CrossRef Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Res 26(7):787–800CrossRef
26.
Zurück zum Zitat Shadloo MS, Yildiz M (2011) Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. Int J Numer Methods Eng 87:988–1006 Shadloo MS, Yildiz M (2011) Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. Int J Numer Methods Eng 87:988–1006
27.
Zurück zum Zitat Taylor G, Taylor G (1966) Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proceedings of the royal society of London. Series A. Math Phys Sci 291(1425): 159–166 Taylor G, Taylor G (1966) Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proceedings of the royal society of London. Series A. Math Phys Sci 291(1425): 159–166
28.
Zurück zum Zitat Zhang J, Kwok D (2005) A 2D lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory. J Comput Phys 206(1):150–161 Zhang J, Kwok D (2005) A 2D lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory. J Comput Phys 206(1):150–161
Metadaten
Titel
A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid
verfasst von
M. S. Shadloo
A. Rahmat
M. Yildiz
Publikationsdatum
01.09.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2013
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-013-0841-z

Weitere Artikel der Ausgabe 3/2013

Computational Mechanics 3/2013 Zur Ausgabe