Skip to main content
Erschienen in: Computational Mechanics 5/2014

01.11.2014 | Original Paper

Phase field approximation of dynamic brittle fracture

verfasst von: Alexander Schlüter, Adrian Willenbücher, Charlotte Kuhn, Ralf Müller

Erschienen in: Computational Mechanics | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numerical methods that are able to predict the failure of technical structures due to fracture are important in many engineering applications. One of these approaches, the so-called phase field method, represents cracks by means of an additional continuous field variable. This strategy avoids some of the main drawbacks of a sharp interface description of cracks. For example, it is not necessary to track or model crack faces explicitly, which allows a simple algorithmic treatment. The phase field model for brittle fracture presented in Kuhn and Müller (Eng Fract Mech 77(18):3625–3634, 2010) assumes quasi-static loading conditions. However dynamic effects have a great impact on the crack growth in many practical applications. Therefore this investigation presents an extension of the quasi-static phase field model for fracture from Kuhn and Müller (Eng Fract Mech 77(18):3625–3634, 2010) to the dynamic case. First of all Hamilton’s principle is applied to derive a coupled set of Euler-Lagrange equations that govern the mechanical behaviour of the body as well as the crack growth. Subsequently the model is implemented in a finite element scheme which allows to solve several test problems numerically. The numerical examples illustrate the capabilities of the developed approach to dynamic fracture in brittle materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via \(\gamma \)-convergence. Commun Pure Appl Math 43(8):999–1036MathSciNetCrossRefMATH Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via \(\gamma \)-convergence. Commun Pure Appl Math 43(8):999–1036MathSciNetCrossRefMATH
2.
Zurück zum Zitat Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solid 57(8):1209–1229CrossRefMATH Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solid 57(8):1209–1229CrossRefMATH
3.
Zurück zum Zitat Bertram A, Kalthoff JF (2003) Crack propagation toughness of rock for the range of low to very high crack speeds. Key Eng Mater 251–252(1):423–430CrossRef Bertram A, Kalthoff JF (2003) Crack propagation toughness of rock for the range of low to very high crack speeds. Key Eng Mater 251–252(1):423–430CrossRef
4.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Meth Appl Mech Eng 217–220:77–95MathSciNetCrossRef Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Meth Appl Mech Eng 217–220:77–95MathSciNetCrossRef
5.
Zurück zum Zitat Bourdin B (2007) Numerical implementation of the variational formulation of quasi-static brittle fracture. Interfaces Free Boundaries 9:411–430MathSciNetCrossRefMATH Bourdin B (2007) Numerical implementation of the variational formulation of quasi-static brittle fracture. Interfaces Free Boundaries 9:411–430MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bourdin B, Larsen C, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133–143CrossRefMATH Bourdin B, Larsen C, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133–143CrossRefMATH
7.
Zurück zum Zitat Braides A (2002) \(\Gamma \)-convergence for beginners. In: Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford Braides A (2002) \(\Gamma \)-convergence for beginners. In: Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford
8.
Zurück zum Zitat Chambolle A (2004) An approximation result for special functions with bounded deformation. J Math Pure Appl 83(7):929–954MathSciNetCrossRef Chambolle A (2004) An approximation result for special functions with bounded deformation. J Math Pure Appl 83(7):929–954MathSciNetCrossRef
9.
Zurück zum Zitat Das S (2003) Dynamic fracture mechanics in the study of the earthquake rupturing process: theory and observation. J Mech Phys Solid 51(11–12):1939–1955CrossRefMATH Das S (2003) Dynamic fracture mechanics in the study of the earthquake rupturing process: theory and observation. J Mech Phys Solid 51(11–12):1939–1955CrossRefMATH
10.
Zurück zum Zitat Fineberg J, Gross SP, Marder M, Swinney HL (1992) Instability in the propagation of fast cracks. Phys Rev B 45:5146–5154CrossRef Fineberg J, Gross SP, Marder M, Swinney HL (1992) Instability in the propagation of fast cracks. Phys Rev B 45:5146–5154CrossRef
11.
Zurück zum Zitat Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solid 46(8):1319–1342MathSciNetCrossRefMATH Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solid 46(8):1319–1342MathSciNetCrossRefMATH
12.
13.
Zurück zum Zitat Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRef Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRef
14.
Zurück zum Zitat Gross D, Seelig T (2010) Fracture mechanics: with an introduction to micromechanics. Mechanical engineering series. Springer, Berlin Gross D, Seelig T (2010) Fracture mechanics: with an introduction to micromechanics. Mechanical engineering series. Springer, Berlin
15.
Zurück zum Zitat Gross SP, Fineberg J, Marder M, McCormick WD, Swinney HL (1993) Acoustic emissions from rapidly moving cracks. Phys Rev Lett 71:3162–3165CrossRef Gross SP, Fineberg J, Marder M, McCormick WD, Swinney HL (1993) Acoustic emissions from rapidly moving cracks. Phys Rev Lett 71:3162–3165CrossRef
16.
Zurück zum Zitat Gurtin ME (1996) Generalized ginzburg-landau and cahn-hilliard equations based on a microforce balance. Phys D 92(3–4):178–192MathSciNetCrossRefMATH Gurtin ME (1996) Generalized ginzburg-landau and cahn-hilliard equations based on a microforce balance. Phys D 92(3–4):178–192MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solid 57(2):342–368CrossRefMATH Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solid 57(2):342–368CrossRefMATH
18.
Zurück zum Zitat Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered fe implementation. Int J Fract 178(1–2):113–129CrossRef Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered fe implementation. Int J Fract 178(1–2):113–129CrossRef
19.
Zurück zum Zitat Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93(3):276–301MathSciNetCrossRef Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93(3):276–301MathSciNetCrossRef
20.
Zurück zum Zitat Hopkinson B (1921) The pressure of a blow. The Scientific Papers of Bertram Hopkinson pp 423–437 Hopkinson B (1921) The pressure of a blow. The Scientific Papers of Bertram Hopkinson pp 423–437
21.
Zurück zum Zitat Hopkinson J (1872) On the rupture of iron wire by a blow. Proc Manch Lit Philos Soc 11:40–45 Hopkinson J (1872) On the rupture of iron wire by a blow. Proc Manch Lit Philos Soc 11:40–45
22.
Zurück zum Zitat Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications Inc, Mineola Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications Inc, Mineola
23.
Zurück zum Zitat Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364 Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364
24.
Zurück zum Zitat Kalthoff J (2000) Modes of dynamic shear failure in solids. Int J Fract 101:1–31CrossRef Kalthoff J (2000) Modes of dynamic shear failure in solids. Int J Fract 101:1–31CrossRef
25.
Zurück zum Zitat Kalthoff JF, Winkler S (1987) Failure mode transition of high rates of shear loading. Proc. I. Con. Imp. Load. Dyn. Beh. Mat. 1:185–195 Kalthoff JF, Winkler S (1987) Failure mode transition of high rates of shear loading. Proc. I. Con. Imp. Load. Dyn. Beh. Mat. 1:185–195
26.
Zurück zum Zitat Katzav E, Adda-Bedia M, Arias R (2007) Theory of dynamic crack branching in brittle materials. Int. J. Fract. 143:245–271CrossRefMATH Katzav E, Adda-Bedia M, Arias R (2007) Theory of dynamic crack branching in brittle materials. Int. J. Fract. 143:245–271CrossRefMATH
27.
Zurück zum Zitat Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: Iii on steady-state crack propagation and crack branching. Int J Fract 26:33–72CrossRef Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: Iii on steady-state crack propagation and crack branching. Int J Fract 26:33–72CrossRef
28.
Zurück zum Zitat Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109MathSciNetCrossRef Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109MathSciNetCrossRef
29.
Zurück zum Zitat Kuhn C (2013) Numerical and analytical investigation of a phase field model for fracture. Phd thesis, Technische Universität Kaiserslautern Kuhn C (2013) Numerical and analytical investigation of a phase field model for fracture. Phd thesis, Technische Universität Kaiserslautern
30.
Zurück zum Zitat Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625–3634. Computational mechanics in fracture and damage: a special issue in honor of Prof. Gross Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625–3634. Computational mechanics in fracture and damage: a special issue in honor of Prof. Gross
31.
Zurück zum Zitat Maso GD (1993) Introduction to \(\Gamma \)-convergence. Progress in nonlinear differential equations and their applications, Birkhäuser Maso GD (1993) Introduction to \(\Gamma \)-convergence. Progress in nonlinear differential equations and their applications, Birkhäuser
32.
Zurück zum Zitat Mello M, Bhat HS, Rosakis AJ, Kanamori H (2014) Reproducing the supershear portion of the 2002 denali earthquake rupture in laboratory. Earth Planet Sci Lett 387:89–96CrossRef Mello M, Bhat HS, Rosakis AJ, Kanamori H (2014) Reproducing the supershear portion of the 2002 denali earthquake rupture in laboratory. Earth Planet Sci Lett 387:89–96CrossRef
33.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150 Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150
34.
Zurück zum Zitat Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685MathSciNetCrossRefMATH Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685MathSciNetCrossRefMATH
35.
Zurück zum Zitat Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: I. crack initiation and arrest. Int J Fract 25(4):247–262CrossRef Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: I. crack initiation and arrest. Int J Fract 25(4):247–262CrossRef
36.
Zurück zum Zitat Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: Ii. microstructural aspects. Int J Fract 26(1):65–80CrossRef Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: Ii. microstructural aspects. Int J Fract 26(1):65–80CrossRef
37.
Zurück zum Zitat Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: Iii. on steady-state crack propagation and crack branching. Int J Fract 26(2):141–154CrossRef Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: Iii. on steady-state crack propagation and crack branching. Int J Fract 26(2):141–154CrossRef
38.
Zurück zum Zitat Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: Iv. on the interaction of stress waves with propagating cracks. Int J Fract 26(3):189–200CrossRef Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: Iv. on the interaction of stress waves with propagating cracks. Int J Fract 26(3):189–200CrossRef
39.
Zurück zum Zitat Rosakis AJ, Samudrala O, Coker D (2000) Intersonic shear crack growth along weak planes. Mater Res Innov 3(4):236–243CrossRef Rosakis AJ, Samudrala O, Coker D (2000) Intersonic shear crack growth along weak planes. Mater Res Innov 3(4):236–243CrossRef
40.
Zurück zum Zitat Schlueter A, Willenbuecher A, Kuhn C (2013) GPU-accelerated crack path computation based on a phase field approach for brittle fracture. In: Proceedings of the 2nd young researcher symposium (YRS) 2013, pp 60–65. Fraunhofer Verlag, Kaiserslautern, Germany Schlueter A, Willenbuecher A, Kuhn C (2013) GPU-accelerated crack path computation based on a phase field approach for brittle fracture. In: Proceedings of the 2nd young researcher symposium (YRS) 2013, pp 60–65. Fraunhofer Verlag, Kaiserslautern, Germany
41.
Zurück zum Zitat Seelig T, Gross D (1999) On the interaction and branching of fast running cracksâa numerical investigation. J Mech Phys Solids 47(4):935–952CrossRefMATH Seelig T, Gross D (1999) On the interaction and branching of fast running cracksâa numerical investigation. J Mech Phys Solids 47(4):935–952CrossRefMATH
42.
Zurück zum Zitat Sharon E, Gross SP, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74:5096–5099CrossRef Sharon E, Gross SP, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74:5096–5099CrossRef
Metadaten
Titel
Phase field approximation of dynamic brittle fracture
verfasst von
Alexander Schlüter
Adrian Willenbücher
Charlotte Kuhn
Ralf Müller
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1045-x

Weitere Artikel der Ausgabe 5/2014

Computational Mechanics 5/2014 Zur Ausgabe