Skip to main content
Erschienen in: Computational Mechanics 2/2015

01.02.2015 | Original Paper

A review on phase-field models of brittle fracture and a new fast hybrid formulation

verfasst von: Marreddy Ambati, Tymofiy Gerasimov, Laura De Lorenzis

Erschienen in: Computational Mechanics | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this contribution we address the issue of efficient finite element treatment for phase-field modeling of brittle fracture. We start by providing an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities. Within the formulations stemming from Griffith’s theory, we focus on quasi-static models featuring a tension-compression split, which prevent cracking in compression and interpenetration of the crack faces upon closure, and on the staggered algorithmic implementation due to its proved robustness. In this paper, we establish an appropriate stopping criterion for the staggered scheme. Moreover, we propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem. This enables a significant reduction of computational cost—about one order of magnitude—with respect to the available (non-linear) models. The conceptual and structural similarities of the hybrid formulation to gradient-enhanced continuum damage mechanics are outlined as well. Several benchmark problems are solved, including one with own experimental verification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143CrossRefMathSciNet Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143CrossRefMathSciNet
2.
Zurück zum Zitat Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282CrossRefMATH Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282CrossRefMATH
3.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefMATH
4.
Zurück zum Zitat Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85:118–121CrossRef Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85:118–121CrossRef
5.
Zurück zum Zitat Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501CrossRef Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501CrossRef
6.
Zurück zum Zitat Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368CrossRefMATH Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368CrossRefMATH
7.
Zurück zum Zitat Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95CrossRef Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95CrossRef
8.
Zurück zum Zitat Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen CS, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev E 71:036117CrossRef Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen CS, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev E 71:036117CrossRef
9.
Zurück zum Zitat Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105504CrossRef Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105504CrossRef
10.
Zurück zum Zitat Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826CrossRefMATHMathSciNet Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826CrossRefMATHMathSciNet
12.
Zurück zum Zitat Kuhn C, Müller R (2008) A phase field model for fracture. Proc Appl Math Mech 8:10223–10224CrossRef Kuhn C, Müller R (2008) A phase field model for fracture. Proc Appl Math Mech 8:10223–10224CrossRef
13.
Zurück zum Zitat Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRef Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRef
14.
Zurück zum Zitat Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229CrossRefMATH Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229CrossRefMATH
15.
Zurück zum Zitat Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311CrossRefMATHMathSciNet Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311CrossRefMATHMathSciNet
16.
Zurück zum Zitat Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778CrossRefMATHMathSciNet Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778CrossRefMATHMathSciNet
17.
Zurück zum Zitat Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118CrossRefMATHMathSciNet Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118CrossRefMATHMathSciNet
18.
Zurück zum Zitat Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, Oxford Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, Oxford
19.
Zurück zum Zitat Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342CrossRefMATHMathSciNet Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342CrossRefMATHMathSciNet
20.
Zurück zum Zitat Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20:1021–1048CrossRefMATHMathSciNet Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20:1021–1048CrossRefMATHMathSciNet
21.
Zurück zum Zitat Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143CrossRefMATH Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143CrossRefMATH
22.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217—-220:77–95CrossRefMathSciNet Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217—-220:77–95CrossRefMathSciNet
23.
Zurück zum Zitat Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129CrossRef Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129CrossRef
24.
Zurück zum Zitat Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276–301CrossRefMathSciNet Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276–301CrossRefMathSciNet
25.
Zurück zum Zitat Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161CrossRefMATHMathSciNet Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161CrossRefMATHMathSciNet
26.
Zurück zum Zitat Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92(3–4):178–192CrossRefMATHMathSciNet Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92(3–4):178–192CrossRefMATHMathSciNet
27.
Zurück zum Zitat Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATH Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATH
28.
29.
Zurück zum Zitat Murakami S (2012) Continuum damage mechanics. Springer Science and Business Media, NetherlandsCrossRef Murakami S (2012) Continuum damage mechanics. Springer Science and Business Media, NetherlandsCrossRef
30.
Zurück zum Zitat Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models: I. Formulation. Int J Solids Struct 23:821–840CrossRefMATH Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models: I. Formulation. Int J Solids Struct 23:821–840CrossRefMATH
31.
Zurück zum Zitat Mazars J (1986) A description of micro- and macro-scale damage of concrete structures. J Eng Fract Mech 25:729–737CrossRef Mazars J (1986) A description of micro- and macro-scale damage of concrete structures. J Eng Fract Mech 25:729–737CrossRef
32.
Zurück zum Zitat de Vree JHP, Brekelmans WAM, Gils MAJ (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55:581–588CrossRefMATH de Vree JHP, Brekelmans WAM, Gils MAJ (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55:581–588CrossRefMATH
33.
Zurück zum Zitat Pijaudier-Cabot G, Baz̆ant ZP (1987) Nonlocal damage theory. J Eng Mech 118:1512–1533 Pijaudier-Cabot G, Baz̆ant ZP (1987) Nonlocal damage theory. J Eng Mech 118:1512–1533
34.
Zurück zum Zitat Baz̆ant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. ASME J Appl Mech 55:287–293CrossRef Baz̆ant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. ASME J Appl Mech 55:287–293CrossRef
35.
Zurück zum Zitat Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory: application to concrete. ASCE J Eng Mech 115:345–365CrossRef Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory: application to concrete. ASCE J Eng Mech 115:345–365CrossRef
36.
Zurück zum Zitat Pijaudier-Cabot G, Huerta A (1991) Finite element analysis of bifurcation in nonlocal strain softening solids. Comput Methods Appl Mech Eng 90:905–919CrossRef Pijaudier-Cabot G, Huerta A (1991) Finite element analysis of bifurcation in nonlocal strain softening solids. Comput Methods Appl Mech Eng 90:905–919CrossRef
37.
Zurück zum Zitat Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62CrossRef Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62CrossRef
38.
Zurück zum Zitat Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48:980–1012CrossRefMATHMathSciNet Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48:980–1012CrossRefMATHMathSciNet
39.
Zurück zum Zitat Winkler B (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton, Dissertation. University of Innsbruck, Austria Winkler B (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton, Dissertation. University of Innsbruck, Austria
40.
Zurück zum Zitat Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2d LEFM problems. Eng Fract Mech 55:321–334CrossRef Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2d LEFM problems. Eng Fract Mech 55:321–334CrossRef
41.
Zurück zum Zitat Saxena A, Hudak SJ (1987) Review and extension of compliance information for common crack growth specimens. Int J Fract 14:453–468CrossRef Saxena A, Hudak SJ (1987) Review and extension of compliance information for common crack growth specimens. Int J Fract 14:453–468CrossRef
42.
Zurück zum Zitat Watanabe T (2011) Analytical research on method for applying interfacial fracture mechanics to evaluate strength of cementitious adhesive interfaces for thin structural finish details. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry, pp 67–82, ISBN: 978-953-307-351-4 Watanabe T (2011) Analytical research on method for applying interfacial fracture mechanics to evaluate strength of cementitious adhesive interfaces for thin structural finish details. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry, pp 67–82, ISBN: 978-953-307-351-4
Metadaten
Titel
A review on phase-field models of brittle fracture and a new fast hybrid formulation
verfasst von
Marreddy Ambati
Tymofiy Gerasimov
Laura De Lorenzis
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1109-y

Weitere Artikel der Ausgabe 2/2015

Computational Mechanics 2/2015 Zur Ausgabe

Neuer Inhalt