Skip to main content
Erschienen in: Computational Mechanics 5/2015

01.05.2015 | Original Paper

Phase-field modeling of ductile fracture

verfasst von: M. Ambati, T. Gerasimov, L. De Lorenzis

Erschienen in: Computational Mechanics | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phase-field modeling of brittle fracture in elastic solids is a well-established framework that overcomes the limitations of the classical Griffith theory in the prediction of crack nucleation and in the identification of complicated crack paths including branching and merging. We propose a novel phase-field model for ductile fracture of elasto-plastic solids in the quasi-static kinematically linear regime. The formulation is shown to capture the entire range of behavior of a ductile material exhibiting \(J_2\)-plasticity, encompassing plasticization, crack initiation, propagation and failure. Several examples demonstrate the ability of the model to reproduce some important phenomenological features of ductile fracture as reported in the experimental literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3–52CrossRef Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3–52CrossRef
2.
Zurück zum Zitat Sumpter JDG, Forbes AT (1992) Constraint based analysis of shallow cracks in mild steel. In: TWI/EWI/IS international conference on shallow crack fracture mechanics, toughness tests and applications, Cambridge Sumpter JDG, Forbes AT (1992) Constraint based analysis of shallow cracks in mild steel. In: TWI/EWI/IS international conference on shallow crack fracture mechanics, toughness tests and applications, Cambridge
3.
Zurück zum Zitat Sumpter JDG (1993) An experimental investigation of the T stress approach. In: Constraint effects in fracture, ASTM STP 1171 Sumpter JDG (1993) An experimental investigation of the T stress approach. In: Constraint effects in fracture, ASTM STP 1171
4.
Zurück zum Zitat ODowd NP, Shih CF (1991) Family of crack-tip fields characterized by a triaxiality parameter I. Structure of fields. J Mech Phys Solids 39(8):9891015 ODowd NP, Shih CF (1991) Family of crack-tip fields characterized by a triaxiality parameter I. Structure of fields. J Mech Phys Solids 39(8):9891015
5.
Zurück zum Zitat Dawicke DS, Piascik RS, Jr Newman JC (1997) Prediction of stable tearing and fracture of a 2000 series aluminium alloy plate using a CTOA criterion. In: Piascik RS, Newman JC, Dowlings NE (eds) Fatigue and fracture mechanics, ASTM STP 1296, 27:90–104 Dawicke DS, Piascik RS, Jr Newman JC (1997) Prediction of stable tearing and fracture of a 2000 series aluminium alloy plate using a CTOA criterion. In: Piascik RS, Newman JC, Dowlings NE (eds) Fatigue and fracture mechanics, ASTM STP 1296, 27:90–104
6.
Zurück zum Zitat James MA, Newman JC (2003) The effect of crack tunneling on crack growth: experiments and CTOA analyses. Eng Fract Mech 70:457–468CrossRef James MA, Newman JC (2003) The effect of crack tunneling on crack growth: experiments and CTOA analyses. Eng Fract Mech 70:457–468CrossRef
7.
Zurück zum Zitat Mahmoud S, Lease K (2003) The effect of specimen thickness on the experimental characterisation of critical crack tip opening angle in 2024–T351 aluminum alloy. Eng Fract Mech 70:443–456CrossRef Mahmoud S, Lease K (2003) The effect of specimen thickness on the experimental characterisation of critical crack tip opening angle in 2024–T351 aluminum alloy. Eng Fract Mech 70:443–456CrossRef
8.
Zurück zum Zitat Trädegard A, Nilsson F, Östlund S (1998) FEM-remeshing technique applied to crack growth problems. Comput Methods Appl Mech Eng 160:115–131CrossRef Trädegard A, Nilsson F, Östlund S (1998) FEM-remeshing technique applied to crack growth problems. Comput Methods Appl Mech Eng 160:115–131CrossRef
9.
Zurück zum Zitat Pineau A (1980) Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels. In: Proceedings of ICF5 conference, vol 2, Cannes Pineau A (1980) Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels. In: Proceedings of ICF5 conference, vol 2, Cannes
10.
Zurück zum Zitat Berdin C, Besson J, Bugat S, Desmorat R, Feyel F, Forest S, Lorentz E, Maire E, Pardoen T, Pineau A, Tanguy B (2004) Local approach to fracture. Presses de l’Ecole des Mines, Paris Berdin C, Besson J, Bugat S, Desmorat R, Feyel F, Forest S, Lorentz E, Maire E, Pardoen T, Pineau A, Tanguy B (2004) Local approach to fracture. Presses de l’Ecole des Mines, Paris
11.
Zurück zum Zitat Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:215CrossRef Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:215CrossRef
12.
Zurück zum Zitat Tvergaard V, Needleman A (1984) Analysis of the cup–cone fracture in a round tensile bar. Acta Metall 32:157169 Tvergaard V, Needleman A (1984) Analysis of the cup–cone fracture in a round tensile bar. Acta Metall 32:157169
13.
Zurück zum Zitat Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:8389CrossRef Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:8389CrossRef
14.
15.
Zurück zum Zitat Bazant ZP, Pijaudier-Cabot G (1988) Non local continuum damage. Localization, instability and convergence. J Appl Mech 55:287294 Bazant ZP, Pijaudier-Cabot G (1988) Non local continuum damage. Localization, instability and convergence. J Appl Mech 55:287294
16.
Zurück zum Zitat Peerlings RHJ, De Borst R, Brekelmans WAM, De Vree JHP, Spee I (1996) Some Observations on localisation in non-local and gradient damage models. Eur J Mech 15A(6):937–953 Peerlings RHJ, De Borst R, Brekelmans WAM, De Vree JHP, Spee I (1996) Some Observations on localisation in non-local and gradient damage models. Eur J Mech 15A(6):937–953
17.
Zurück zum Zitat Enakoutsa K, Leblond JB, Perrin G (2007) Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture. Comput Methods Appl Mech Eng 196(1316):19461957 Enakoutsa K, Leblond JB, Perrin G (2007) Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture. Comput Methods Appl Mech Eng 196(1316):19461957
18.
Zurück zum Zitat Reusch F, Svendsen B, Klingbeil D (2003) Local and non-local Gurson-based ductile damage and failure modelling at large deformation. Eur J Mech 22A:779792 Reusch F, Svendsen B, Klingbeil D (2003) Local and non-local Gurson-based ductile damage and failure modelling at large deformation. Eur J Mech 22A:779792
19.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131150CrossRef Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131150CrossRef
20.
Zurück zum Zitat Mediavilla J, Peerlings RHJ, Geers MGD (2006) Discrete crack modelling of ductile fracture driven by non-local softening plasticity. Int J Numer Methods Eng 66(4):661688CrossRef Mediavilla J, Peerlings RHJ, Geers MGD (2006) Discrete crack modelling of ductile fracture driven by non-local softening plasticity. Int J Numer Methods Eng 66(4):661688CrossRef
21.
Zurück zum Zitat Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282CrossRef Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282CrossRef
22.
Zurück zum Zitat Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:17011736 Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:17011736
23.
Zurück zum Zitat De Lorenzis L, Fernando D, Teng JG (2013) Coupled mixed-mode cohesive zone modeling of interfacial debonding in simply supported plated beams. Int J Solids Struct 50:2477–2494CrossRef De Lorenzis L, Fernando D, Teng JG (2013) Coupled mixed-mode cohesive zone modeling of interfacial debonding in simply supported plated beams. Int J Solids Struct 50:2477–2494CrossRef
24.
Zurück zum Zitat Roychowdhury YDA, Jr Dodds RH (2002) Ductile tearing in thin aluminum panels: experiments and analyses using large-displacement, 3D surface cohesive elements. Eng Fract Mech 69:983–1002CrossRef Roychowdhury YDA, Jr Dodds RH (2002) Ductile tearing in thin aluminum panels: experiments and analyses using large-displacement, 3D surface cohesive elements. Eng Fract Mech 69:983–1002CrossRef
25.
Zurück zum Zitat Cornec A, Scheider I, Schwalbe KH (2003) On the practical application of the cohesive model. Eng Fract Mech 70(14):1963– 1987CrossRef Cornec A, Scheider I, Schwalbe KH (2003) On the practical application of the cohesive model. Eng Fract Mech 70(14):1963– 1987CrossRef
26.
Zurück zum Zitat Dimitri R, De Lorenzis L, Wriggers P, Zavarise G (2014) NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54:369–388MathSciNetCrossRef Dimitri R, De Lorenzis L, Wriggers P, Zavarise G (2014) NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54:369–388MathSciNetCrossRef
27.
Zurück zum Zitat Scheider I, Brocks W (2003) Simulation of cup–cone fracture using the cohesive model. Eng Fract Mech 70(14):1943–1961CrossRef Scheider I, Brocks W (2003) Simulation of cup–cone fracture using the cohesive model. Eng Fract Mech 70(14):1943–1961CrossRef
28.
Zurück zum Zitat Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef
29.
Zurück zum Zitat Seabra MRR, Sustarić P, Cesar de Sa JMA, Rodić T (2013) Damage driven crack initiation and propagation in ductile metals using XFEM. Comput Mech 52:161–179MathSciNetCrossRef Seabra MRR, Sustarić P, Cesar de Sa JMA, Rodić T (2013) Damage driven crack initiation and propagation in ductile metals using XFEM. Comput Mech 52:161–179MathSciNetCrossRef
30.
Zurück zum Zitat Broumand P, Khoei AR (2013) The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model. Eng Fract Mech 112–113:97–125CrossRef Broumand P, Khoei AR (2013) The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model. Eng Fract Mech 112–113:97–125CrossRef
31.
Zurück zum Zitat Crété JP, Longère P, Cadou JM (2014) Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM. Comput Methods Appl Mech Eng 275:204–233CrossRef Crété JP, Longère P, Cadou JM (2014) Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM. Comput Methods Appl Mech Eng 275:204–233CrossRef
32.
Zurück zum Zitat Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826MathSciNetCrossRef Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826MathSciNetCrossRef
33.
Zurück zum Zitat Kuhn C, Müller R (2008) A phase field model for fracture. Proc Appl Math Mech 8:10223–10224CrossRef Kuhn C, Müller R (2008) A phase field model for fracture. Proc Appl Math Mech 8:10223–10224CrossRef
34.
Zurück zum Zitat Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRef Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRef
35.
Zurück zum Zitat Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229CrossRef Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229CrossRef
36.
Zurück zum Zitat Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311MathSciNetCrossRef Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311MathSciNetCrossRef
37.
Zurück zum Zitat Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778MathSciNetCrossRef Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778MathSciNetCrossRef
38.
Zurück zum Zitat Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118MathSciNetCrossRef Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118MathSciNetCrossRef
39.
40.
Zurück zum Zitat Hofacker M, Miehe C (2012) A phase field model for ductile to brittle failure mode transition. Proc Appl Math Mech 12:173–174CrossRef Hofacker M, Miehe C (2012) A phase field model for ductile to brittle failure mode transition. Proc Appl Math Mech 12:173–174CrossRef
41.
Zurück zum Zitat Ulmer H, Hofacker M, Miehe C (2013) Phase field modeling of brittle and ductile fracture. Proc Appl Math Mech 13:533–536CrossRef Ulmer H, Hofacker M, Miehe C (2013) Phase field modeling of brittle and ductile fracture. Proc Appl Math Mech 13:533–536CrossRef
43.
Zurück zum Zitat Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342MathSciNetCrossRef Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342MathSciNetCrossRef
44.
45.
Zurück zum Zitat Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20:1021–1048MathSciNetCrossRef Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20:1021–1048MathSciNetCrossRef
46.
Zurück zum Zitat Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143CrossRef Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143CrossRef
47.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95MathSciNetCrossRef Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95MathSciNetCrossRef
48.
Zurück zum Zitat Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129CrossRef Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129CrossRef
49.
Zurück zum Zitat Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276–301MathSciNetCrossRef Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276–301MathSciNetCrossRef
50.
Zurück zum Zitat Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161MathSciNetCrossRef Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161MathSciNetCrossRef
51.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, New York Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, New York
52.
Zurück zum Zitat Neto EdS, Perić D, Owen DRJ (2008) Computational methods for plasticity. Wiley, New YorkCrossRef Neto EdS, Perić D, Owen DRJ (2008) Computational methods for plasticity. Wiley, New YorkCrossRef
53.
Zurück zum Zitat Mediavilla J, Peerlings RHJ, Geers MGD (2006) A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput Struct 84:604–623CrossRef Mediavilla J, Peerlings RHJ, Geers MGD (2006) A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput Struct 84:604–623CrossRef
54.
Zurück zum Zitat Xue L (2007) Ductile fracture modeling: theory, experimental investigation and numerical verification. Massachusetts Institute of Technology, Cambridge Xue L (2007) Ductile fracture modeling: theory, experimental investigation and numerical verification. Massachusetts Institute of Technology, Cambridge
55.
Zurück zum Zitat Xue L (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75:3276–3293CrossRef Xue L (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75:3276–3293CrossRef
56.
Zurück zum Zitat Alves M, Jones N (1999) Influence of hydrostatic stress on failure of axisymmetric notched specimens. J Mech Phys Solids 47:643–667CrossRef Alves M, Jones N (1999) Influence of hydrostatic stress on failure of axisymmetric notched specimens. J Mech Phys Solids 47:643–667CrossRef
57.
Zurück zum Zitat Amstutz BE, Sutton MA, Dawicke DS, Boone ML (1997) Effects of mixed mode I/II loading and grain orientation on crack initiation and stable tearing in 2024–T3 aluminum. Fatigue Fract Mech 27:24–217 Amstutz BE, Sutton MA, Dawicke DS, Boone ML (1997) Effects of mixed mode I/II loading and grain orientation on crack initiation and stable tearing in 2024–T3 aluminum. Fatigue Fract Mech 27:24–217
58.
Zurück zum Zitat Arcan M, Hashin Z, Voloshin A (1978) Method to produce uniform plane stress states with applications to fiber-reinforced materials. Exp Mech 18:6–141CrossRef Arcan M, Hashin Z, Voloshin A (1978) Method to produce uniform plane stress states with applications to fiber-reinforced materials. Exp Mech 18:6–141CrossRef
59.
Zurück zum Zitat Nayfeh AH (2011) Introduction to perturbation techniques. Wiley-VCH, Weinheim Nayfeh AH (2011) Introduction to perturbation techniques. Wiley-VCH, Weinheim
60.
Zurück zum Zitat Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92(3–4):178–192MathSciNetCrossRef Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92(3–4):178–192MathSciNetCrossRef
61.
Zurück zum Zitat Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, New YorkCrossRef Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, New YorkCrossRef
Metadaten
Titel
Phase-field modeling of ductile fracture
verfasst von
M. Ambati
T. Gerasimov
L. De Lorenzis
Publikationsdatum
01.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1151-4

Weitere Artikel der Ausgabe 5/2015

Computational Mechanics 5/2015 Zur Ausgabe