Skip to main content
Erschienen in: Computational Mechanics 3/2016

01.03.2016 | Original Paper

A model-reduction approach to the micromechanical analysis of polycrystalline materials

verfasst von: Jean-Claude Michel, Pierre Suquet

Erschienen in: Computational Mechanics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study is devoted to the extension to polycrystals of a model-reduction technique introduced by the authors, called the nonuniform transformation field analysis (NTFA). This new reduced model is obtained in two steps. First the local fields of internal variables are decomposed on a reduced basis of modes as in the NTFA. Second the dissipation potential of the phases is replaced by its tangent second-order (TSO) expansion. The reduced evolution equations of the model can be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations on two specific applications, creep of polycrystalline ice and response of polycrystalline copper to a cyclic tension-compression test. The new reduced evolution equations is faster than the full-field computations by two orders of magnitude in the two examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Another possible and frequent choice is to choose the plastic slips \(\gamma _s\) as internal variables, at the expense of a larger number of variables.
 
2
Other boundary conditions can be considered provided the Hill-Mandel condition is satisfied (Suquet [41]).
 
3
Alternatively one could prescribe the path of macroscopic stress.
 
Literatur
1.
Zurück zum Zitat Armstrong P, Frederick C (1966) A mathematical representation of the multiaxial Bauschinger effect. Central Electricity Generating Board and Berkeley Nuclear Laboratories, Research & Development Department Report RD/B/N731, reprinted in. Mat High Temp 24(2007):11–26 Armstrong P, Frederick C (1966) A mathematical representation of the multiaxial Bauschinger effect. Central Electricity Generating Board and Berkeley Nuclear Laboratories, Research & Development Department Report RD/B/N731, reprinted in. Mat High Temp 24(2007):11–26
2.
Zurück zum Zitat Asaro R (1983) Micromechanics of crystals and polycrystals. In: Hutchinson J, Wu T (eds) Advances in applied mechanics. Academic Press, New-York, pp 1–114 Asaro R (1983) Micromechanics of crystals and polycrystals. In: Hutchinson J, Wu T (eds) Advances in applied mechanics. Academic Press, New-York, pp 1–114
3.
Zurück zum Zitat Ashby M, Duval P (1985) The creep of polycrystalline ice. Cold Reg Sci Technol 11:285–300CrossRef Ashby M, Duval P (1985) The creep of polycrystalline ice. Cold Reg Sci Technol 11:285–300CrossRef
4.
Zurück zum Zitat Castelnau O, Canova G, Lebensohn R, Duval P (1997) Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self-consistent approach. Acta Mater 45:4823–4834CrossRef Castelnau O, Canova G, Lebensohn R, Duval P (1997) Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self-consistent approach. Acta Mater 45:4823–4834CrossRef
5.
Zurück zum Zitat Castelnau O, Duval P, Montagnat M, Brenner R (2008) Elastoviscoplastic micromechanical modeling of the transient creep of ice. J Geophys Res 113:B11203CrossRef Castelnau O, Duval P, Montagnat M, Brenner R (2008) Elastoviscoplastic micromechanical modeling of the transient creep of ice. J Geophys Res 113:B11203CrossRef
6.
Zurück zum Zitat Chinesta F, Cueto E (2014) PGD-based modeling of materials, structures and processes. Springer, HeidelbergCrossRef Chinesta F, Cueto E (2014) PGD-based modeling of materials, structures and processes. Springer, HeidelbergCrossRef
7.
Zurück zum Zitat Duval P, Ashby M, Anderman I (1983) Rate controlling processes in the creep of polycrystalline ice. J Phys Chem 87:4066–4074CrossRef Duval P, Ashby M, Anderman I (1983) Rate controlling processes in the creep of polycrystalline ice. J Phys Chem 87:4066–4074CrossRef
9.
Zurück zum Zitat Dvorak G, Bahei-El-Din Y, Wafa A (1994) The modeling of inelastic composite materials with the transformation field analysis. Model Simul Mater Sci Eng 2:571–586CrossRefMATH Dvorak G, Bahei-El-Din Y, Wafa A (1994) The modeling of inelastic composite materials with the transformation field analysis. Model Simul Mater Sci Eng 2:571–586CrossRefMATH
10.
Zurück zum Zitat Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330CrossRefMATH Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330CrossRefMATH
11.
Zurück zum Zitat Fish J, Shek K, Pandheeradi M, Shepard M (1997) Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Comput Methods Appl Mech Eng 148:53–73MathSciNetCrossRefMATH Fish J, Shek K, Pandheeradi M, Shepard M (1997) Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Comput Methods Appl Mech Eng 148:53–73MathSciNetCrossRefMATH
12.
Zurück zum Zitat Fish J, Yu Q (2002) Computational mechanics of fatigue and life predictions for composite materials and structures. Comput Methods Appl Mech Eng 191:4827–4849CrossRefMATH Fish J, Yu Q (2002) Computational mechanics of fatigue and life predictions for composite materials and structures. Comput Methods Appl Mech Eng 191:4827–4849CrossRefMATH
13.
Zurück zum Zitat Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Methods Eng 84:803–829MathSciNetCrossRefMATH Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Methods Eng 84:803–829MathSciNetCrossRefMATH
14.
Zurück zum Zitat Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154MathSciNetCrossRefMATH Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154MathSciNetCrossRefMATH
16.
Zurück zum Zitat Gérard C, N’Guyen F, Osipov N, Cailletaud G, Bornert M, Caldemaison D (2009) Comparison of experimental results and finite element simulation of strain localization scheme under cyclic loading. Comput Mater Sci 46(3):755–760CrossRef Gérard C, N’Guyen F, Osipov N, Cailletaud G, Bornert M, Caldemaison D (2009) Comparison of experimental results and finite element simulation of strain localization scheme under cyclic loading. Comput Mater Sci 46(3):755–760CrossRef
17.
Zurück zum Zitat Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010–1020CrossRefMATH Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010–1020CrossRefMATH
18.
Zurück zum Zitat Halphen B, Nguyen QS (1975) Sur les matériaux standard généralisés. J Mécanique 14:39–63MATH Halphen B, Nguyen QS (1975) Sur les matériaux standard généralisés. J Mécanique 14:39–63MATH
19.
Zurück zum Zitat Herrera-Solaz V, Llorca J, Dogan E, Karaman I, Segurado J (2014) An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy. Int J Plasticity 57:1–15CrossRef Herrera-Solaz V, Llorca J, Dogan E, Karaman I, Segurado J (2014) An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy. Int J Plasticity 57:1–15CrossRef
20.
Zurück zum Zitat Holmes P, Lumley J, Berkooz G (1996) Structures, dynamical systems and symmetry. Cambridge University Press, CambridgeMATH Holmes P, Lumley J, Berkooz G (1996) Structures, dynamical systems and symmetry. Cambridge University Press, CambridgeMATH
21.
22.
Zurück zum Zitat Kanouté P, Boso D, Chaboche JL, Schrefler B (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16:31–75CrossRefMATH Kanouté P, Boso D, Chaboche JL, Schrefler B (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16:31–75CrossRefMATH
23.
Zurück zum Zitat Kattan P, Voyiadjis G (1993) Overall damage and elastoplastic deformation in fibrous metal matrix composites. Int J Plasticity 9:931–949CrossRefMATH Kattan P, Voyiadjis G (1993) Overall damage and elastoplastic deformation in fibrous metal matrix composites. Int J Plasticity 9:931–949CrossRefMATH
25.
Zurück zum Zitat Lebensohn R (2001) N-site modelling of a 3d viscoplastic polycrystal using fast Fourier transforms. Acta Mater. 49:2723–2737CrossRef Lebensohn R (2001) N-site modelling of a 3d viscoplastic polycrystal using fast Fourier transforms. Acta Mater. 49:2723–2737CrossRef
26.
Zurück zum Zitat Lucia D, Beran P, Silva W (2004) Reduced-order modeling: new approaches for computational physics. Progr Aerospace Sci 40:51–117CrossRef Lucia D, Beran P, Silva W (2004) Reduced-order modeling: new approaches for computational physics. Progr Aerospace Sci 40:51–117CrossRef
27.
Zurück zum Zitat Méric L, Cailletaud G (1991) Single crystal modeling for structural calculations. part 2: finite element implementation. J Eng Mat Technol 113:171–182CrossRef Méric L, Cailletaud G (1991) Single crystal modeling for structural calculations. part 2: finite element implementation. J Eng Mat Technol 113:171–182CrossRef
28.
Zurück zum Zitat Michel JC, Galvanetto U, Suquet P (2000) Constitutive relations involving internal variables based on a micromechanical analysis. In: Maugin G, Drouot R, Sidoroff F (eds) Continuum Thermomechanics: the art and science of modelling material behaviour. Klüwer Academic Publishers, Boston, pp 301–312 Michel JC, Galvanetto U, Suquet P (2000) Constitutive relations involving internal variables based on a micromechanical analysis. In: Maugin G, Drouot R, Sidoroff F (eds) Continuum Thermomechanics: the art and science of modelling material behaviour. Klüwer Academic Publishers, Boston, pp 301–312
29.
Zurück zum Zitat Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143MathSciNetCrossRefMATH Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143MathSciNetCrossRefMATH
31.
Zurück zum Zitat Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502MathSciNetCrossRefMATH Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502MathSciNetCrossRefMATH
32.
Zurück zum Zitat Michel JC, Suquet P (2009) Nonuniform transformation field analysis: a reduced model for multiscale nonlinear problems in Solid Mechanics. In: Aliabadi F, Galvanetto U (Eds.) Multiscale modelling in solid mechanics—computational approaches. Imperial College Press, pp. 159–206, chapter 4 Michel JC, Suquet P (2009) Nonuniform transformation field analysis: a reduced model for multiscale nonlinear problems in Solid Mechanics. In: Aliabadi F, Galvanetto U (Eds.) Multiscale modelling in solid mechanics—computational approaches. Imperial College Press, pp. 159–206, chapter 4
33.
Zurück zum Zitat Michel JC, Suquet P (2015) A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J. Mech. Phys. Solids Submitted Michel JC, Suquet P (2015) A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J. Mech. Phys. Solids Submitted
34.
Zurück zum Zitat Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94MathSciNetCrossRefMATH Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94MathSciNetCrossRefMATH
35.
Zurück zum Zitat Pellegrino C, Galvanetto U, Schrefler B (1999) Numerical homogenization of periodic composite materials with non-linear material components. Int J Numer Methods Eng 46:1609–1637CrossRefMATH Pellegrino C, Galvanetto U, Schrefler B (1999) Numerical homogenization of periodic composite materials with non-linear material components. Int J Numer Methods Eng 46:1609–1637CrossRefMATH
36.
Zurück zum Zitat Rice J (1970) On the structure of stress-strain relations for time-dependent plastic deformation in metals. J Appl Mech 37:728–737CrossRef Rice J (1970) On the structure of stress-strain relations for time-dependent plastic deformation in metals. J Appl Mech 37:728–737CrossRef
37.
Zurück zum Zitat Rice J (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19:433–455CrossRefMATH Rice J (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19:433–455CrossRefMATH
38.
Zurück zum Zitat Roters F, Eisenlohr P, Bieler T, Raabe D (2010) Crystal plasticity finite element methods. materials science and engineering. Wiley-VCH, WeinheimCrossRef Roters F, Eisenlohr P, Bieler T, Raabe D (2010) Crystal plasticity finite element methods. materials science and engineering. Wiley-VCH, WeinheimCrossRef
39.
Zurück zum Zitat Ryckelynck D, Benziane D (2010) Multi-level a priori Hyper-reduction of mechanical models involving internal variables. Comput Methods Appl Mech Eng 199:1134–1142MathSciNetCrossRefMATH Ryckelynck D, Benziane D (2010) Multi-level a priori Hyper-reduction of mechanical models involving internal variables. Comput Methods Appl Mech Eng 199:1134–1142MathSciNetCrossRefMATH
40.
Zurück zum Zitat Sirovich L (1987) Turbulence and the dynamics of coherent structures. Q Appl Math 45:561–590MathSciNetMATH Sirovich L (1987) Turbulence and the dynamics of coherent structures. Q Appl Math 45:561–590MathSciNetMATH
41.
Zurück zum Zitat Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Vol. 272 of Lecture Notes in Physics. Springer Verlag, New York, pp 193–278CrossRef Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Vol. 272 of Lecture Notes in Physics. Springer Verlag, New York, pp 193–278CrossRef
42.
Zurück zum Zitat Suquet P (1997) Effective properties of nonlinear composites. In: Suquet P (ed) Continuum micromechanics. Vol. 377 of CISM Lecture Notes. Springer Verlag, New York, pp 197–264CrossRef Suquet P (1997) Effective properties of nonlinear composites. In: Suquet P (ed) Continuum micromechanics. Vol. 377 of CISM Lecture Notes. Springer Verlag, New York, pp 197–264CrossRef
43.
Zurück zum Zitat Suquet P, Moulinec H, Castelnau O, Lahellec N, Montagnat M, Grennerat F, Duval P, Brenner R (2012) Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep. Proc IUTAM 3:76–90. doi:10.1016/j.piutam.2012.03.006 CrossRef Suquet P, Moulinec H, Castelnau O, Lahellec N, Montagnat M, Grennerat F, Duval P, Brenner R (2012) Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep. Proc IUTAM 3:76–90. doi:10.​1016/​j.​piutam.​2012.​03.​006 CrossRef
44.
Zurück zum Zitat Taylor G (1934) The mechanics of plastic deformation of crystals. Part I: theoretical. Proc R Soc A 145:362–387 Taylor G (1934) The mechanics of plastic deformation of crystals. Part I: theoretical. Proc R Soc A 145:362–387
45.
Zurück zum Zitat Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comp Methods Appl Mech Eng 190:5427–5464MathSciNetCrossRefMATH Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comp Methods Appl Mech Eng 190:5427–5464MathSciNetCrossRefMATH
46.
Zurück zum Zitat Weertman J (1973) Creep of ice. In: Whalley E, Jones S, Gold L (eds) Physics and chemistry of ice. Royal Society, Ottawa, pp 320–337 Weertman J (1973) Creep of ice. In: Whalley E, Jones S, Gold L (eds) Physics and chemistry of ice. Royal Society, Ottawa, pp 320–337
Metadaten
Titel
A model-reduction approach to the micromechanical analysis of polycrystalline materials
verfasst von
Jean-Claude Michel
Pierre Suquet
Publikationsdatum
01.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1248-9

Weitere Artikel der Ausgabe 3/2016

Computational Mechanics 3/2016 Zur Ausgabe