Skip to main content
Erschienen in: Computational Mechanics 3/2016

01.03.2016 | Original Paper

Multi-scale concurrent material and structural design under mechanical and thermal loads

verfasst von: Jun Yan, Xu Guo, Gengdong Cheng

Erschienen in: Computational Mechanics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, multi-scale concurrent topology optimization of material and structural design under mechanical and thermal loads is considered. To this end, the Porous Anisotropic Material with Penalization (PAMP) model which includes both microscopic material density and macroscopic material density as design variables, is employed to distribute material on two length scales in an optimal way. Corresponding problem formulation and numerical solution procedures are also developed and validated through a number of numerical examples. It is found that the proposed method is effective for the solution of concurrent material and structural optimization problems. Numerical evidences also suggest that compared with solid material, porous material with well-designed microstructure may be a better choice when thermo-elastic effects are considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769CrossRefMATH Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769CrossRefMATH
2.
Zurück zum Zitat Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRefMATH Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRefMATH
3.
Zurück zum Zitat Hutchinson RG, Wicks N, Evans AG, Fleck NA, Hutchinson JW (2003) Kagome plate structures for actuation. Int J Solids Struct 40(25):6969–6980MathSciNetCrossRefMATH Hutchinson RG, Wicks N, Evans AG, Fleck NA, Hutchinson JW (2003) Kagome plate structures for actuation. Int J Solids Struct 40(25):6969–6980MathSciNetCrossRefMATH
4.
Zurück zum Zitat Zhang Y, Xue ZY, Qiu XM, Fang DN (2008) Plastic yield and collapse mechanism of planar lattice structures. J Mech Mater Struct 3(7):1257–1277CrossRef Zhang Y, Xue ZY, Qiu XM, Fang DN (2008) Plastic yield and collapse mechanism of planar lattice structures. J Mech Mater Struct 3(7):1257–1277CrossRef
5.
Zurück zum Zitat Rodrigues HC, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscipl Optim 24:1–10CrossRef Rodrigues HC, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscipl Optim 24:1–10CrossRef
6.
Zurück zum Zitat Coelho PG, Fernandes PR, Guedes JM (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscipl Optim 35(2):107–115CrossRef Coelho PG, Fernandes PR, Guedes JM (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscipl Optim 35(2):107–115CrossRef
7.
Zurück zum Zitat Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13):1417–1425CrossRef Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13):1417–1425CrossRef
8.
Zurück zum Zitat Rodrigues HC, Fernandes PR (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Meth Eng 38:1951–1965MathSciNetCrossRefMATH Rodrigues HC, Fernandes PR (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Meth Eng 38:1951–1965MathSciNetCrossRefMATH
9.
Zurück zum Zitat Pedersen P, Niels NL (2010) Strength optimized designs of thermoelastic structures. Struct Multidiscipl Optim 42:681–691CrossRef Pedersen P, Niels NL (2010) Strength optimized designs of thermoelastic structures. Struct Multidiscipl Optim 42:681–691CrossRef
10.
Zurück zum Zitat Li Q, Steven GP, Xie YM (1999) Displacement minimization of thermoelastic structures by evolutionary thickness designs. Comput Methods Appl Mech Eng 179:361–378CrossRefMATH Li Q, Steven GP, Xie YM (1999) Displacement minimization of thermoelastic structures by evolutionary thickness designs. Comput Methods Appl Mech Eng 179:361–378CrossRefMATH
11.
Zurück zum Zitat Deaton JD, Grandhi RV (2013) Stiffening of restrained thermal structures via topology optimization. Struct Multidiscipl Optim 48:731–745CrossRef Deaton JD, Grandhi RV (2013) Stiffening of restrained thermal structures via topology optimization. Struct Multidiscipl Optim 48:731–745CrossRef
12.
13.
Zurück zum Zitat Dems K, Mróz Z (1987) Variational approach to sensitivity analysis in thermoelasticity. J Therm Stress 10:283–306MathSciNetCrossRef Dems K, Mróz Z (1987) Variational approach to sensitivity analysis in thermoelasticity. J Therm Stress 10:283–306MathSciNetCrossRef
14.
Zurück zum Zitat Deng JD, Yan J, Cheng GD (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscipl Optim 47(4):583–597MathSciNetCrossRefMATH Deng JD, Yan J, Cheng GD (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscipl Optim 47(4):583–597MathSciNetCrossRefMATH
15.
Zurück zum Zitat Sun SP, Zhang WH (2009) Topology optimal design of thermo-elastic structures. Acta Mech Sin 41(6):878–887 Sun SP, Zhang WH (2009) Topology optimal design of thermo-elastic structures. Acta Mech Sin 41(6):878–887
16.
Zurück zum Zitat Radman A, Huang X, Xie YM (2014) Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity. Comput Mater Sci 91:266–273CrossRef Radman A, Huang X, Xie YM (2014) Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity. Comput Mater Sci 91:266–273CrossRef
17.
Zurück zum Zitat Yan J, Yang SX, Duan ZY, Yang CQ (2015) Minimum compliance optimization of a thermoelastic lattice structure with size-coupled effects. J Therm Stress 38(3):338–357CrossRef Yan J, Yang SX, Duan ZY, Yang CQ (2015) Minimum compliance optimization of a thermoelastic lattice structure with size-coupled effects. J Therm Stress 38(3):338–357CrossRef
18.
Zurück zum Zitat Liu S, Cheng GD (1995) Homogenization-based method for predicting thermal expansion coefficients of composite materials. J Dalian Univ Technol 35(5):451–457MATH Liu S, Cheng GD (1995) Homogenization-based method for predicting thermal expansion coefficients of composite materials. J Dalian Univ Technol 35(5):451–457MATH
19.
Zurück zum Zitat Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254MathSciNetCrossRefMATH Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254MathSciNetCrossRefMATH
20.
Zurück zum Zitat Duan ZY, Yan J, Zhao GZ (2015) Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct Multidiscipl Optim 51(3):721–732CrossRef Duan ZY, Yan J, Zhao GZ (2015) Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct Multidiscipl Optim 51(3):721–732CrossRef
21.
Zurück zum Zitat Yan J, Cheng GD, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multi Design Optim 2(4):259–266CrossRef Yan J, Cheng GD, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multi Design Optim 2(4):259–266CrossRef
22.
Zurück zum Zitat Zhang WH, Duysinx P (2003) Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization. Comput Struct 81:2173–2181CrossRef Zhang WH, Duysinx P (2003) Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization. Comput Struct 81:2173–2181CrossRef
23.
Zurück zum Zitat Bendsoe MP, Sigmund O (2003) Topology optimization: theory methods and applications. Springer-Verlag, BerlinMATH Bendsoe MP, Sigmund O (2003) Topology optimization: theory methods and applications. Springer-Verlag, BerlinMATH
Metadaten
Titel
Multi-scale concurrent material and structural design under mechanical and thermal loads
verfasst von
Jun Yan
Xu Guo
Gengdong Cheng
Publikationsdatum
01.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1255-x

Weitere Artikel der Ausgabe 3/2016

Computational Mechanics 3/2016 Zur Ausgabe

Neuer Inhalt