Skip to main content
Erschienen in: Computational Mechanics 3/2017

21.11.2016 | Original Paper

Non-coherent energetic interfaces accounting for degradation

verfasst von: Ali Esmaeili, Paul Steinmann, Ali Javili

Erschienen in: Computational Mechanics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Within the continuum mechanics framework, there are two main approaches to model interfaces: classical cohesive zone modeling (CZM) and interface elasticity theory. The classical CZM deals with geometrically non-coherent interfaces for which the constitutive relation is expressed in terms of traction–separation laws. However, CZM lacks any response related to the stretch of the mid-plane of the interface. This issue becomes problematic particularly at small scales with increasing interface area to bulk volume ratios, where interface elasticity is no longer negligible. The interface elasticity theory, in contrast to CZM, deals with coherent interfaces that are endowed with their own energetic structures, and thus is capable of capturing elastic resistance to tangential stretch. Nonetheless, the interface elasticity theory suffers from the lack of inelastic material response, regardless of the strain level. The objective of this contribution therefore is to introduce a generalized mechanical interface model that couples both the elastic response along the interface and the cohesive response across the interface whereby interface degradation is taken into account. The material degradation of the interface mid-plane is captured by a non-local damage model of integral-type. The out-of-plane decohesion is described by a classical cohesive zone model. These models are then coupled through their corresponding damage variables. The non-linear governing equations and the weak forms thereof are derived. The numerical implementation is carried out using the finite element method and consistent tangents are derived. Finally, a series of numerical examples is studied to provide further insight into the problem and to carefully elucidate key features of the proposed theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
An interface can be regarded as a two-sided surface, therefore the terms “surface” and “interface” are sometimes used interchangeably.
 
2
Recall that the coherence condition on the interface implies the continuity of the displacement across the interface and thus the displacement jump vanishes identically.
 
3
Also note the differences between the units of interface stress and traction that are N/mm and N/mm\(^2\), respectively. The unit of length in this work is mm.
 
4
The term “mid-plane” is only valid in the case of non-coherency on the interface.
 
5
Note that the term “out-of-plane” refers to cohesive properties of the interface since these properties are functions of the relative displacement of the two sides of the interface with respect to each other and not the deformation of the interface mid-plane. Therefore shear opening and shear degradation are also labeled out-of-plane.
 
6
The superficiality of the interface Piola stress tensor is a classical assumption of interface elasticity theory. Recently, [47] have proven that this condition is the consequence of a first-order continuum theory.
 
7
The integral term in Eq. (3) is introduced in analogy to that of [81, Sect.  1.3.3] and denotes the energy storage in the material due to the accumulation of microscopic defects.
 
8
The geodesics are the general form of straight lines when applied to curved, three-dimensional interfaces. The minimal geodesics in differential geometry are the shortest distance paths between two points on a interface.
 
9
Since in the current cohesive zone model the traction vector is co-linear with the displacement jump vector, the balance of angular momentum on the interface is fulfilled. See [67] for further details.
 
10
In what follows, for the sake of brevity, homogeneous Neumann boundary conditions are assumed and the body forces are omitted and hence, some integrals vanish. The integrals are standard and require no additional care for a generalized interface.
 
Literatur
1.
Zurück zum Zitat Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Meth Eng 50:1701–1736MATHCrossRef Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Meth Eng 50:1701–1736MATHCrossRef
2.
Zurück zum Zitat Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Meth Eng 68(5):542–582MathSciNetMATHCrossRef Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Meth Eng 68(5):542–582MathSciNetMATHCrossRef
3.
Zurück zum Zitat Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. lnt J Fract 77(2):111–140CrossRef Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. lnt J Fract 77(2):111–140CrossRef
4.
Zurück zum Zitat Allix O, Corigliano A (1999) Geometrical and interfacial non-linearities in the analysis of delamination in composites. Int J Solids Struct 36(15):2189–2216MATHCrossRef Allix O, Corigliano A (1999) Geometrical and interfacial non-linearities in the analysis of delamination in composites. Int J Solids Struct 36(15):2189–2216MATHCrossRef
5.
Zurück zum Zitat Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos. Struct. 31(1):61–74CrossRef Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos. Struct. 31(1):61–74CrossRef
6.
Zurück zum Zitat Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(1):55–129MathSciNetCrossRef Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(1):55–129MathSciNetCrossRef
7.
Zurück zum Zitat Benveniste Y (2006) A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54(4):708–734MathSciNetMATHCrossRef Benveniste Y (2006) A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54(4):708–734MathSciNetMATHCrossRef
8.
Zurück zum Zitat Benveniste Y (2013) Models of thin interphases and the effective medium approximation in composite media with curvilinearly anisotropic coated inclusions. Int J Eng Sci 72:140–154CrossRef Benveniste Y (2013) Models of thin interphases and the effective medium approximation in composite media with curvilinearly anisotropic coated inclusions. Int J Eng Sci 72:140–154CrossRef
9.
Zurück zum Zitat Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323CrossRef Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323CrossRef
10.
Zurück zum Zitat Bolzon G, Corigliano A (1997) A discrete formulation for elastic solids with damaging interfaces. Comput Methods Appl Mech Eng 140(3–4):329–359MATHCrossRef Bolzon G, Corigliano A (1997) A discrete formulation for elastic solids with damaging interfaces. Comput Methods Appl Mech Eng 140(3–4):329–359MATHCrossRef
11.
Zurück zum Zitat Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(2):2899–2938MATHCrossRef Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(2):2899–2938MATHCrossRef
12.
Zurück zum Zitat Cammarata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng A 237(2):180–184CrossRef Cammarata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng A 237(2):180–184CrossRef
13.
Zurück zum Zitat Catlin A, Walker WP (1960) Mechanical properties of thin single-crystal gold films. J Appl Phys 31(12):2135–2139CrossRef Catlin A, Walker WP (1960) Mechanical properties of thin single-crystal gold films. J Appl Phys 31(12):2135–2139CrossRef
14.
Zurück zum Zitat Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a nonlocal damage model. Int J Solids Struct 46(6):1476–1490MATHCrossRef Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a nonlocal damage model. Int J Solids Struct 46(6):1476–1490MATHCrossRef
15.
Zurück zum Zitat Cervenka J, Saouma VE (1995) Discrete crack modeling in concrete structures. In: Wittmann FH (eds) Fracture mechanics of concrete structures, proceedings FRAMCOS-2 Cervenka J, Saouma VE (1995) Discrete crack modeling in concrete structures. In: Wittmann FH (eds) Fracture mechanics of concrete structures, proceedings FRAMCOS-2
16.
Zurück zum Zitat Chaboche JL, Girard R, Schaff A (1997) Numerical analysis of composite systems by using interphase/interface models. Comput Mech 20:3–11MATHCrossRef Chaboche JL, Girard R, Schaff A (1997) Numerical analysis of composite systems by using interphase/interface models. Comput Mech 20:3–11MATHCrossRef
17.
Zurück zum Zitat Chatzigeorgiou G, Javili A, Steinmann P (2013) Multiscale modelling for composites with energetic interfaces at the micro- or nanoscale. Math Mech Solids 20(9):1130–1145MathSciNetMATHCrossRef Chatzigeorgiou G, Javili A, Steinmann P (2013) Multiscale modelling for composites with energetic interfaces at the micro- or nanoscale. Math Mech Solids 20(9):1130–1145MathSciNetMATHCrossRef
18.
Zurück zum Zitat Chen J, Crisfield M, Kinloch AJ, Busso EP, Matthews FL, Qiu Y (1999) Predicting progressive delamination of composite material specimens via interface elements. Mech Compos Mater Struct 6(4):301–317CrossRef Chen J, Crisfield M, Kinloch AJ, Busso EP, Matthews FL, Qiu Y (1999) Predicting progressive delamination of composite material specimens via interface elements. Mech Compos Mater Struct 6(4):301–317CrossRef
19.
Zurück zum Zitat Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30(20):2779–2811MATHCrossRef Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30(20):2779–2811MATHCrossRef
20.
Zurück zum Zitat Daher N, Maugin GA (1986) The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces. Acta Mech 60(3–4):217–240MathSciNetMATHCrossRef Daher N, Maugin GA (1986) The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces. Acta Mech 60(3–4):217–240MathSciNetMATHCrossRef
21.
Zurück zum Zitat Davydov D, Javili A, Steinmann P (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 69:510–519CrossRef Davydov D, Javili A, Steinmann P (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 69:510–519CrossRef
22.
Zurück zum Zitat dell’Isola F, Romano A (1987) On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int J Eng Sci 25:1459–1468MathSciNetMATHCrossRef dell’Isola F, Romano A (1987) On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int J Eng Sci 25:1459–1468MathSciNetMATHCrossRef
23.
Zurück zum Zitat Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854MathSciNetMATHCrossRef Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854MathSciNetMATHCrossRef
24.
Zurück zum Zitat Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys Rev B 75(6):064206CrossRef Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys Rev B 75(6):064206CrossRef
25.
Zurück zum Zitat Duan HL, Wang J, Huang ZP, Karihaloo BL (2005a) Eshelby formalism for nano-inhomogeneities. Proc R Soc A 461(2062):3335–3353MathSciNetMATHCrossRef Duan HL, Wang J, Huang ZP, Karihaloo BL (2005a) Eshelby formalism for nano-inhomogeneities. Proc R Soc A 461(2062):3335–3353MathSciNetMATHCrossRef
26.
Zurück zum Zitat Duan HL, Wang J, Huang ZP, Karihaloo BL (2005b) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53(7):1574–1596MathSciNetMATHCrossRef Duan HL, Wang J, Huang ZP, Karihaloo BL (2005b) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53(7):1574–1596MathSciNetMATHCrossRef
27.
Zurück zum Zitat Duan HL, Wang J, Karihaloo BL (2009) Theory of elasticity at the nanoscale. Adv Appl Mech 42:1–68CrossRef Duan HL, Wang J, Karihaloo BL (2009) Theory of elasticity at the nanoscale. Adv Appl Mech 42:1–68CrossRef
28.
Zurück zum Zitat Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRef Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRef
29.
30.
Zurück zum Zitat Esmaeili A, Javili A, Steinmann P (2016b) A thermo-mechanical cohesive zone model accounting for mechanically energetic Kapitza interfaces. Int J Solids Struct 92–93:29–44CrossRef Esmaeili A, Javili A, Steinmann P (2016b) A thermo-mechanical cohesive zone model accounting for mechanically energetic Kapitza interfaces. Int J Solids Struct 92–93:29–44CrossRef
31.
Zurück zum Zitat Fagerström M, Larsson R (2005) Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Meth Eng 66:911–948MathSciNetMATHCrossRef Fagerström M, Larsson R (2005) Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Meth Eng 66:911–948MathSciNetMATHCrossRef
32.
Zurück zum Zitat Fagerström M, Larsson R (2008) A thermo-mechanical cohesive zone formulation for ductile fracture. J Mech Phys Solids 56(10):3037–3058MathSciNetMATHCrossRef Fagerström M, Larsson R (2008) A thermo-mechanical cohesive zone formulation for ductile fracture. J Mech Phys Solids 56(10):3037–3058MathSciNetMATHCrossRef
33.
Zurück zum Zitat Fartash A, Fullerton EE, Schuller IK, Bobbin SE, Wagner JW, Cammarata RC, Kumar S, Grimsditch M (1991) Evidence for the supermodulus effect and enhanced hardness in metallic superlattices. Phys Rev B 44:13760–13763CrossRef Fartash A, Fullerton EE, Schuller IK, Bobbin SE, Wagner JW, Cammarata RC, Kumar S, Grimsditch M (1991) Evidence for the supermodulus effect and enhanced hardness in metallic superlattices. Phys Rev B 44:13760–13763CrossRef
34.
Zurück zum Zitat Fischer FD, Svoboda J (2010) Stresses in hollow nanoparticles. Int J Solids Struct 47(20):2799–2805MATHCrossRef Fischer FD, Svoboda J (2010) Stresses in hollow nanoparticles. Int J Solids Struct 47(20):2799–2805MATHCrossRef
35.
Zurück zum Zitat Fleischhauer R, Behnke R, Kaliske M (2013) A thermomechanical interface element formulation for finite deformations. Comput Mech 52(5):1039–1058MathSciNetMATHCrossRef Fleischhauer R, Behnke R, Kaliske M (2013) A thermomechanical interface element formulation for finite deformations. Comput Mech 52(5):1039–1058MathSciNetMATHCrossRef
36.
Zurück zum Zitat Fried E, Todres R (2005) Mind the gap: the shape of the free surface of a rubber-like material in proximity to a rigid contactor. J Elast 80(1–3):97–151MathSciNetMATHCrossRef Fried E, Todres R (2005) Mind the gap: the shape of the free surface of a rubber-like material in proximity to a rigid contactor. J Elast 80(1–3):97–151MathSciNetMATHCrossRef
37.
Zurück zum Zitat Gasser TC, Holzapfel GA (2003) Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput Methods Appl Mech Eng 192(47–48):5059–5098MathSciNetMATHCrossRef Gasser TC, Holzapfel GA (2003) Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput Methods Appl Mech Eng 192(47–48):5059–5098MathSciNetMATHCrossRef
38.
39.
Zurück zum Zitat Gurtin ME, Weissmüller J, Larché F (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 78(5):1093–1109CrossRef Gurtin ME, Weissmüller J, Larché F (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 78(5):1093–1109CrossRef
40.
Zurück zum Zitat Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781CrossRef Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781CrossRef
41.
Zurück zum Zitat Huang ZP, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190(1–4):151–163MATHCrossRef Huang ZP, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190(1–4):151–163MATHCrossRef
42.
Zurück zum Zitat Ijaz H, Asad M, Gornet L, Alam SY (2014) Prediction of delamination crack growth in carbon/fiber epoxy composite laminates using non-local interface damage model. Mech Ind 15(4):293–300CrossRef Ijaz H, Asad M, Gornet L, Alam SY (2014) Prediction of delamination crack growth in carbon/fiber epoxy composite laminates using non-local interface damage model. Mech Ind 15(4):293–300CrossRef
43.
Zurück zum Zitat Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput Methods Appl Mech Eng 198(27–29):2198–2208MATHCrossRef Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput Methods Appl Mech Eng 198(27–29):2198–2208MATHCrossRef
44.
Zurück zum Zitat Javili A, Steinmann P (2010a) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765MathSciNetMATHCrossRef Javili A, Steinmann P (2010a) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765MathSciNetMATHCrossRef
45.
Zurück zum Zitat Javili A, Steinmann P (2010b) On thermomechanical solids with boundary structures. Int J Solids Struct 47(24):3245–3253MATHCrossRef Javili A, Steinmann P (2010b) On thermomechanical solids with boundary structures. Int J Solids Struct 47(24):3245–3253MATHCrossRef
46.
Zurück zum Zitat Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mater Sci 65:542–551CrossRef Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mater Sci 65:542–551CrossRef
47.
Zurück zum Zitat Javili A, dell’Isola F, Steinmann P (2013a) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401MathSciNetMATHCrossRef Javili A, dell’Isola F, Steinmann P (2013a) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401MathSciNetMATHCrossRef
48.
Zurück zum Zitat Javili A, McBride A, Steinmann P (2013b) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802CrossRef Javili A, McBride A, Steinmann P (2013b) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802CrossRef
49.
Zurück zum Zitat Javili A, McBride A, Steinmann P (2013c) Numerical modelling of thermomechanical solids with highly conductive energetic interfaces. Int J Numer Meth Eng 93(5):551–574MathSciNetMATHCrossRef Javili A, McBride A, Steinmann P (2013c) Numerical modelling of thermomechanical solids with highly conductive energetic interfaces. Int J Numer Meth Eng 93(5):551–574MathSciNetMATHCrossRef
50.
51.
Zurück zum Zitat Javili A, McBride A, Steinmann P, Reddy BD (2014b) A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput Mech 54(3):745–762MathSciNetMATHCrossRef Javili A, McBride A, Steinmann P, Reddy BD (2014b) A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput Mech 54(3):745–762MathSciNetMATHCrossRef
52.
Zurück zum Zitat Jirásek M, Belytschko T (2002) Computational resolution of strong discontinuities. In: Proceedings of fifth world congress on computational mechanics, WCCM V, Vienna University of Technology, Austria Jirásek M, Belytschko T (2002) Computational resolution of strong discontinuities. In: Proceedings of fifth world congress on computational mechanics, WCCM V, Vienna University of Technology, Austria
53.
Zurück zum Zitat Ladevèze P, Allix O, Gornet L, Lévêque D, Perret L (1998) A computational damage mechanics approach for laminates: identification and comparison with experimental results. Stud Appl Mech 46:481–500CrossRef Ladevèze P, Allix O, Gornet L, Lévêque D, Perret L (1998) A computational damage mechanics approach for laminates: identification and comparison with experimental results. Stud Appl Mech 46:481–500CrossRef
54.
Zurück zum Zitat Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105(16):165701CrossRef Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105(16):165701CrossRef
55.
Zurück zum Zitat Lin G, Geubelle PH, Sottos NR (2001) Simulation of fiber debonding with friction in a model composite pushout test. Int J Solids Struct 38(46–47):8547–8562MATHCrossRef Lin G, Geubelle PH, Sottos NR (2001) Simulation of fiber debonding with friction in a model composite pushout test. Int J Solids Struct 38(46–47):8547–8562MATHCrossRef
56.
Zurück zum Zitat Mergheim J, Steinmann P (2006) A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities. Comput Methods Appl Mech Eng 195:5037–5052MathSciNetMATHCrossRef Mergheim J, Steinmann P (2006) A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities. Comput Methods Appl Mech Eng 195:5037–5052MathSciNetMATHCrossRef
57.
Zurück zum Zitat Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272CrossRef Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272CrossRef
59.
Zurück zum Zitat Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59(8):1647–1668MathSciNetMATHCrossRef Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59(8):1647–1668MathSciNetMATHCrossRef
60.
Zurück zum Zitat Mosler J, Stanković L, Radulović R (2011) Efficient modeling of localized material failure by means of a variationally consistent embedded strong discontinuity approach. Int J Numer Meth Eng 88(10):1008–1041MathSciNetMATHCrossRef Mosler J, Stanković L, Radulović R (2011) Efficient modeling of localized material failure by means of a variationally consistent embedded strong discontinuity approach. Int J Numer Meth Eng 88(10):1008–1041MathSciNetMATHCrossRef
62.
Zurück zum Zitat Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54(3):525–531MATHCrossRef Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54(3):525–531MATHCrossRef
63.
Zurück zum Zitat Nguyen O, Repetto EA, Ortiz M, Radovitzky RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110:351–369CrossRef Nguyen O, Repetto EA, Ortiz M, Radovitzky RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110:351–369CrossRef
64.
Zurück zum Zitat Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282MATHCrossRef Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282MATHCrossRef
65.
Zurück zum Zitat Ottosen NS (1986) Thermodynamic consequences of strain softening in tension. J Eng Mech 112(11):1152–1164CrossRef Ottosen NS (1986) Thermodynamic consequences of strain softening in tension. J Eng Mech 112(11):1152–1164CrossRef
66.
Zurück zum Zitat Ottosen NS, Ristinmaa M (2013) Thermodynamically based fictitious crack/interface model for general normal and shear loading. Int J Solids Struct 50(22–23):3555–3561CrossRef Ottosen NS, Ristinmaa M (2013) Thermodynamically based fictitious crack/interface model for general normal and shear loading. Int J Solids Struct 50(22–23):3555–3561CrossRef
67.
Zurück zum Zitat Ottosen NS, Ristinmaa M, Mosler J (2015) Fundamental physical principles and cohesive zone models at finite displacements—limitations and possibilities. Int J Solids Struct 53:70–79CrossRef Ottosen NS, Ristinmaa M, Mosler J (2015) Fundamental physical principles and cohesive zone models at finite displacements—limitations and possibilities. Int J Solids Struct 53:70–79CrossRef
68.
Zurück zum Zitat Ottosen NS, Ristinmaa M, Mosler J (2016) Framework for non-coherent interface models at finite displacement jumps and finite strains. J Mech Phys Solids 90:124–141 ISSN 0022-5096MathSciNetCrossRef Ottosen NS, Ristinmaa M, Mosler J (2016) Framework for non-coherent interface models at finite displacement jumps and finite strains. J Mech Phys Solids 90:124–141 ISSN 0022-5096MathSciNetCrossRef
69.
Zurück zum Zitat Özdemir I, Brekelmans WAM, Geers MGD (2010) A Thermo-mechanical cohesive zone model. Comput Mech 46:735–745MATHCrossRef Özdemir I, Brekelmans WAM, Geers MGD (2010) A Thermo-mechanical cohesive zone model. Comput Mech 46:735–745MATHCrossRef
70.
Zurück zum Zitat Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1–4):279–297CrossRef Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1–4):279–297CrossRef
71.
Zurück zum Zitat Park HS, Klein PA (2007) Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75:085408CrossRef Park HS, Klein PA (2007) Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75:085408CrossRef
72.
Zurück zum Zitat Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802CrossRef Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802CrossRef
73.
Zurück zum Zitat Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908CrossRef Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908CrossRef
74.
Zurück zum Zitat Parrinello F, Failla B, Borino G (2009) Cohesive-frictional interface constitutive model. Int J Solids Struct 46(13):2680–2692MATHCrossRef Parrinello F, Failla B, Borino G (2009) Cohesive-frictional interface constitutive model. Int J Solids Struct 46(13):2680–2692MATHCrossRef
75.
Zurück zum Zitat Raous M (2011) Interface models coupling adhesion and friction. C R Mec 339(7–8):491–501CrossRef Raous M (2011) Interface models coupling adhesion and friction. C R Mec 339(7–8):491–501CrossRef
76.
Zurück zum Zitat Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70:209–232CrossRef Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70:209–232CrossRef
77.
Zurück zum Zitat Schellekens JCJ, Borst RD (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solids Struct 30(9):1239–1253MATHCrossRef Schellekens JCJ, Borst RD (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solids Struct 30(9):1239–1253MATHCrossRef
78.
Zurück zum Zitat Sharma P, Ganti S (2004) Size-dependent Eshelbys tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech 71(5):663–671MATHCrossRef Sharma P, Ganti S (2004) Size-dependent Eshelbys tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech 71(5):663–671MATHCrossRef
79.
Zurück zum Zitat Sharma P, Wheeler LT (2007) Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech 74(3):447–454MathSciNetMATHCrossRef Sharma P, Wheeler LT (2007) Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech 74(3):447–454MathSciNetMATHCrossRef
80.
Zurück zum Zitat Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537CrossRef Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537CrossRef
81.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATH
83.
Zurück zum Zitat Steinmann P (1999) Formulation and computation of geometrically non-linear gradient damage. Int J Numer Meth Eng 46(5):757–779MathSciNetMATHCrossRef Steinmann P (1999) Formulation and computation of geometrically non-linear gradient damage. Int J Numer Meth Eng 46(5):757–779MathSciNetMATHCrossRef
84.
Zurück zum Zitat Steinmann P (2008) On boundary potential energies in deformational and configurational mechanics. J Mech Phys Solids 56(3):772–800MathSciNetMATHCrossRef Steinmann P (2008) On boundary potential energies in deformational and configurational mechanics. J Mech Phys Solids 56(3):772–800MathSciNetMATHCrossRef
85.
Zurück zum Zitat Steinmann P, Larsson R, Runesson K (1997) On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities. Int J Solids Struct 34(8):969–990MATHCrossRef Steinmann P, Larsson R, Runesson K (1997) On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities. Int J Solids Struct 34(8):969–990MATHCrossRef
86.
Zurück zum Zitat Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng A 125(2):203–213CrossRef Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng A 125(2):203–213CrossRef
87.
Zurück zum Zitat Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40(6):1377–1397MATHCrossRef Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40(6):1377–1397MATHCrossRef
88.
Zurück zum Zitat van den Bosch MJ, Schreurs PJG, Geers MGD (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73:1220–1234 van den Bosch MJ, Schreurs PJG, Geers MGD (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73:1220–1234
89.
Zurück zum Zitat van den Bosch MJ, Schreurs PJG, Geers MGD (2007) A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation. Eur J Mech A Solids 26:1–19MATHCrossRef van den Bosch MJ, Schreurs PJG, Geers MGD (2007) A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation. Eur J Mech A Solids 26:1–19MATHCrossRef
90.
Zurück zum Zitat van den Bosch MJ, Schreurs PJG, Geers MGD (2008) Identification and characterization of delamination in polymer coated metal sheet. J Mech Phys Solids 56(11):3259–3276CrossRef van den Bosch MJ, Schreurs PJG, Geers MGD (2008) Identification and characterization of delamination in polymer coated metal sheet. J Mech Phys Solids 56(11):3259–3276CrossRef
91.
Zurück zum Zitat Willam K, Rhee I, Shing B (2004) Interface damage model for thermomechanical degradation of heterogeneous materials. Comput Methods Appl Mech Eng 193(30):3327–3350MathSciNetMATHCrossRef Willam K, Rhee I, Shing B (2004) Interface damage model for thermomechanical degradation of heterogeneous materials. Comput Methods Appl Mech Eng 193(30):3327–3350MathSciNetMATHCrossRef
92.
Zurück zum Zitat Xu X-P, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Modell Simul Mater Sci Eng 1(2):111CrossRef Xu X-P, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Modell Simul Mater Sci Eng 1(2):111CrossRef
93.
Zurück zum Zitat Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Plys Solid 42(9):1397–1434MATHCrossRef Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Plys Solid 42(9):1397–1434MATHCrossRef
94.
Zurück zum Zitat Yvonnet J, Mitrushchenkov A, Chambaud G, He Q-C (2011) Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng 200(5–8):614–625MathSciNetMATHCrossRef Yvonnet J, Mitrushchenkov A, Chambaud G, He Q-C (2011) Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng 200(5–8):614–625MathSciNetMATHCrossRef
Metadaten
Titel
Non-coherent energetic interfaces accounting for degradation
verfasst von
Ali Esmaeili
Paul Steinmann
Ali Javili
Publikationsdatum
21.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1342-7

Weitere Artikel der Ausgabe 3/2017

Computational Mechanics 3/2017 Zur Ausgabe