Skip to main content
Erschienen in: Computational Mechanics 4/2020

21.01.2020 | Original Paper

An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS

verfasst von: Karsten Paul, Christopher Zimmermann, Kranthi K. Mandadapu, Thomas J. R. Hughes, Chad M. Landis, Roger A. Sauer

Erschienen in: Computational Mechanics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an adaptive space-time phase field formulation for dynamic fracture of brittle shells. Their deformation is characterized by the Kirchhoff–Love thin shell theory using a curvilinear surface description. All kinematical objects are defined on the shell’s mid-plane. The evolution equation for the phase field is determined by the minimization of an energy functional based on Griffith’s theory of brittle fracture. Membrane and bending contributions to the fracture process are modeled separately and a thickness integration is established for the latter. The coupled system consists of two nonlinear fourth-order PDEs and all quantities are defined on an evolving two-dimensional manifold. Since the weak form requires \(C^1\)-continuity, isogeometric shape functions are used. The mesh is adaptively refined based on the phase field using Locally Refinable (LR) NURBS. Time is discretized based on a generalized-\(\alpha \) method using adaptive time-stepping, and the discretized coupled system is solved with a monolithic Newton–Raphson scheme. The interaction between surface deformation and crack evolution is demonstrated by several numerical examples showing dynamic crack propagation and branching.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This is a part of the Saint Venant–Kirchhoff model, see Duong et al. [19].
 
2
To avoid confusion, we write discrete arrays, such as the shape function array \({\mathbf {N}}\), in roman font, whereas continuous tensors, such as the normal vector \({\varvec{N}}\), are written in italic font.
 
3
The free nodes refer to the degrees of freedom, which are not given by boundary conditions.
 
4
\(T_0\) refers to a reference time used to obtain a dimensionless formulation, see Sect. 5.7
 
5
Note that \(\rho _0\) is the surface density and has units \([\mathrm {kg}/\mathrm {m}^2]\).
 
6
Also see the remark on stress waves at the beginning of this section.
 
7
We can compute the shear wave speed based on \(c_\mathrm {s}=\sqrt{G/\rho }\approx 6.2\,L_0/T_0\). An approximate value for the Rayleigh wave speed is then obtained as \(c_\mathrm {R}\approx 0.9162\cdot c_\mathrm {s}\approx 5.7\,L_0/T_0\). Based on the experiments by Ravi-Chandar and Knauss [58], the crack tip velocity stays below \(60\%\) of the Rayleigh wave speed. We can thus formulate a condition for the minimum time step, i.e. \(\Delta t\le \Delta t_\mathrm {max}<\Delta x_\mathrm {min}/(0.6\cdot c_\mathrm {R})\approx 1.1\cdot 10^{-3}\,T_0\), where the minimum element size is \(\Delta x_\mathrm {min}=1/256\,L_0\).
 
Literatur
1.
Zurück zum Zitat Ambati M, De Lorenzis L (2016) Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput Methods Appl Mech Eng 312:351–373MathSciNet Ambati M, De Lorenzis L (2016) Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput Methods Appl Mech Eng 312:351–373MathSciNet
2.
Zurück zum Zitat Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405MathSciNetMATH Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405MathSciNetMATH
3.
Zurück zum Zitat Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57(1):149–167MathSciNetMATH Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57(1):149–167MathSciNetMATH
4.
Zurück zum Zitat Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Introducing the new features of Theoretical and Applied Fracture Mechanics through the scientific expertise of the Editorial Board. Theor Appl Fract Mech 69:102–109 Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Introducing the new features of Theoretical and Applied Fracture Mechanics through the scientific expertise of the Editorial Board. Theor Appl Fract Mech 69:102–109
5.
Zurück zum Zitat Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229MATH Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229MATH
6.
Zurück zum Zitat Areias P, Rabczuk T, Msekh M (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312:322–350MathSciNet Areias P, Rabczuk T, Msekh M (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312:322–350MathSciNet
7.
Zurück zum Zitat Badnava H, Msekh MA, Etemadi E, Rabczuk T (2018) An h-adaptive thermo–mechanical phase field model for fracture. Finite Elem Anal Des 138:31–47 Badnava H, Msekh MA, Etemadi E, Rabczuk T (2018) An h-adaptive thermo–mechanical phase field model for fracture. Finite Elem Anal Des 138:31–47
8.
Zurück zum Zitat Benson DJ, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146MathSciNetMATH Benson DJ, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146MathSciNetMATH
9.
Zurück zum Zitat Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166MathSciNet Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166MathSciNet
10.
Zurück zum Zitat Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118MathSciNetMATH Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118MathSciNetMATH
11.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95MathSciNetMATH Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95MathSciNetMATH
12.
Zurück zum Zitat Bourdin B, Francfort G, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826MathSciNetMATH Bourdin B, Francfort G, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826MathSciNetMATH
13.
Zurück zum Zitat Bourdin B, Larsen CJ, Richardson CL (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133–143MATH Bourdin B, Larsen CJ, Richardson CL (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133–143MATH
14.
Zurück zum Zitat Chen L, de Borst R (2018) Locally refined T-splines. Int J Numer Methods Eng 114(6):637–659MathSciNet Chen L, de Borst R (2018) Locally refined T-splines. Int J Numer Methods Eng 114(6):637–659MathSciNet
15.
Zurück zum Zitat Chen L, Verhoosel CV, de Borst R (2018) Discrete fracture analysis using locally refined T-splines. Int J Numer Methods Eng 116(2):117–140MathSciNet Chen L, Verhoosel CV, de Borst R (2018) Discrete fracture analysis using locally refined T-splines. Int J Numer Methods Eng 116(2):117–140MathSciNet
16.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. J Appl Mech 60(2):371–375MathSciNetMATH Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. J Appl Mech 60(2):371–375MathSciNetMATH
17.
Zurück zum Zitat Ciarlet PG (1993) Mathematical elasticity: three dimensional elasticity. Elsevier, North-HollandMATH Ciarlet PG (1993) Mathematical elasticity: three dimensional elasticity. Elsevier, North-HollandMATH
18.
Zurück zum Zitat Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356MathSciNetMATH Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356MathSciNetMATH
19.
Zurück zum Zitat Duong TX, Roohbakhshan F, Sauer RA (2017) A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput Methods Appl Mech Eng 316:43–83MathSciNet Duong TX, Roohbakhshan F, Sauer RA (2017) A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput Methods Appl Mech Eng 316:43–83MathSciNet
20.
Zurück zum Zitat Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180MathSciNetMATH Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180MathSciNetMATH
21.
Zurück zum Zitat Forsey DR, Bartels RH (1988) Hierarchical B-spline refinement. SIGGRAPH Comput Graph 22(4):205–212 Forsey DR, Bartels RH (1988) Hierarchical B-spline refinement. SIGGRAPH Comput Graph 22(4):205–212
22.
Zurück zum Zitat Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342MathSciNetMATH Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342MathSciNetMATH
23.
Zurück zum Zitat Geelen RJ, Liu Y, Hu T, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng 348:680–711MathSciNet Geelen RJ, Liu Y, Hu T, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng 348:680–711MathSciNet
24.
Zurück zum Zitat Geelen RJM, Liu Y, Dolbow JE, Rodríguez-Ferran A (2018) An optimization-based phase-field method for continuous-discontinuous crack propagation. Int J Numer Methods Eng 116(1):1–20MathSciNet Geelen RJM, Liu Y, Dolbow JE, Rodríguez-Ferran A (2018) An optimization-based phase-field method for continuous-discontinuous crack propagation. Int J Numer Methods Eng 116(1):1–20MathSciNet
25.
Zurück zum Zitat Gerasimov T, Lorenzis LD (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng 312:276–303MathSciNet Gerasimov T, Lorenzis LD (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng 312:276–303MathSciNet
26.
Zurück zum Zitat Gerasimov T, Lorenzis LD (2019) On penalization in variational phase-field models of brittle fracture. Comput Methods Appl Mech Eng 354:990–1026MathSciNet Gerasimov T, Lorenzis LD (2019) On penalization in variational phase-field models of brittle fracture. Comput Methods Appl Mech Eng 354:990–1026MathSciNet
27.
Zurück zum Zitat Gerasimov T, Noii N, Allix O, De Lorenzis L (2018) A non-intrusive global/local approach applied to phase-field modeling of brittle fracture. Adv Model Simul Eng Sci 5:14 Gerasimov T, Noii N, Allix O, De Lorenzis L (2018) A non-intrusive global/local approach applied to phase-field modeling of brittle fracture. Adv Model Simul Eng Sci 5:14
28.
Zurück zum Zitat Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171MathSciNetMATH Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171MathSciNetMATH
29.
Zurück zum Zitat Griffith AA (1921) VI. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198 Griffith AA (1921) VI. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198
30.
Zurück zum Zitat Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495MathSciNetMATH Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495MathSciNetMATH
31.
Zurück zum Zitat Hesch C, Franke M, Dittmann M, Temizer İ (2016a) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems. Comput Methods Appl Mech Eng 301:242–58MathSciNetMATH Hesch C, Franke M, Dittmann M, Temizer İ (2016a) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems. Comput Methods Appl Mech Eng 301:242–58MathSciNetMATH
32.
Zurück zum Zitat Hesch C, Schuß S, Dittmann M, Franke M, Weinberg K (2016b) Isogeometric analysis and hierarchical refinement for higher-order phase-field models. Comput Methods Appl Mech Eng 303:185–207MathSciNetMATH Hesch C, Schuß S, Dittmann M, Franke M, Weinberg K (2016b) Isogeometric analysis and hierarchical refinement for higher-order phase-field models. Comput Methods Appl Mech Eng 303:185–207MathSciNetMATH
33.
Zurück zum Zitat Hirmand MR, Papoulia KD (2018) A continuation method for rigid-cohesive fracture in a discontinuous Galerkin finite element setting. Int J Numer Methods Eng 115(5):627–650 Hirmand MR, Papoulia KD (2018) A continuation method for rigid-cohesive fracture in a discontinuous Galerkin finite element setting. Int J Numer Methods Eng 115(5):627–650
34.
Zurück zum Zitat Hirmand MR, Papoulia KD (2019) Block coordinate descent energy minimization for dynamic cohesive fracture. Comput Methods Appl Mech Eng 354:663–688MathSciNet Hirmand MR, Papoulia KD (2019) Block coordinate descent energy minimization for dynamic cohesive fracture. Comput Methods Appl Mech Eng 354:663–688MathSciNet
35.
Zurück zum Zitat Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93(3):276–301MathSciNetMATH Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93(3):276–301MathSciNetMATH
36.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetMATH
37.
Zurück zum Zitat Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514MathSciNetMATH Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514MathSciNetMATH
38.
Zurück zum Zitat Karma A, Kessler D, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 75:045501 Karma A, Kessler D, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 75:045501
39.
Zurück zum Zitat Kästner M, Hennig P, Linse T, Ulbricht V (2016) Phase-field modelling of damage and fracture–convergence and local mesh refinement. In: Naumenko K, Aßmus M (eds) Advanced methods of continuum mechanics for materials and structures. Springer, Singapore, pp 307–324 Kästner M, Hennig P, Linse T, Ulbricht V (2016) Phase-field modelling of damage and fracture–convergence and local mesh refinement. In: Naumenko K, Aßmus M (eds) Advanced methods of continuum mechanics for materials and structures. Springer, Singapore, pp 307–324
40.
Zurück zum Zitat Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374–394MathSciNet Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374–394MathSciNet
41.
Zurück zum Zitat Kiendl J, Hsu M-C, Wu MC, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303MathSciNetMATH Kiendl J, Hsu M-C, Wu MC, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303MathSciNetMATH
42.
Zurück zum Zitat Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143 Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143
43.
Zurück zum Zitat Kuhn C, Müller R (2010) A continuum phase field model for fracture. Computational mechanics in fracture and damage: a special issue in Honor of Prof. Gross. Eng Fract Mech 77(18):3625–3634 Kuhn C, Müller R (2010) A continuum phase field model for fracture. Computational mechanics in fracture and damage: a special issue in Honor of Prof. Gross. Eng Fract Mech 77(18):3625–3634
44.
Zurück zum Zitat Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Selected articles from phase-field method 2014 international seminar. Comput Mater Sci 108:374–384 Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Selected articles from phase-field method 2014 international seminar. Comput Mater Sci 108:374–384
45.
Zurück zum Zitat Larsen C, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Model Methods Appl Sci 20:1021–1048MathSciNetMATH Larsen C, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Model Methods Appl Sci 20:1021–1048MathSciNetMATH
46.
Zurück zum Zitat Larsen CJ (2010) Models for dynamic fracture based on Griffith’s criterion. In: Hackl K (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials. Springer, Dordrecht, pp 131–140 Larsen CJ (2010) Models for dynamic fracture based on Griffith’s criterion. In: Hackl K (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials. Springer, Dordrecht, pp 131–140
47.
Zurück zum Zitat Linse T, Hennig P, Kästner M, de Borst R (2017) A convergence study of phase-field models for brittle fracture. Eng Fract Mech 184:307–318 Linse T, Hennig P, Kästner M, de Borst R (2017) A convergence study of phase-field models for brittle fracture. Eng Fract Mech 184:307–318
48.
Zurück zum Zitat Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778MathSciNetMATH Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778MathSciNetMATH
49.
Zurück zum Zitat Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311MathSciNetMATH Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311MathSciNetMATH
50.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150MathSciNetMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150MathSciNetMATH
51.
Zurück zum Zitat Molinari JF, Gazonas G, Raghupathy R, Rusinek A, Zhou F (2007) The cohesive element approach to dynamic fragmentation: the question of energy convergence. Int J Numer Methods Eng 69(3):484–503MATH Molinari JF, Gazonas G, Raghupathy R, Rusinek A, Zhou F (2007) The cohesive element approach to dynamic fragmentation: the question of energy convergence. Int J Numer Methods Eng 69(3):484–503MATH
52.
Zurück zum Zitat Nagaraja S, Elhaddad M, Ambati M, Kollmannsberger S, De Lorenzis L, Rank E (2018) Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. Comput Mech 63:1283–1300MathSciNetMATH Nagaraja S, Elhaddad M, Ambati M, Kollmannsberger S, De Lorenzis L, Rank E (2018) Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. Comput Mech 63:1283–1300MathSciNetMATH
53.
Zurück zum Zitat Naghdi PM (1973) The theory of shells and plates. In: Truesdell C (ed) Linear theories of elasticity and thermoelasticity: linear and nonlinear theories of rods, plates, and shells. Springer, Berlin, pp 425–640 Naghdi PM (1973) The theory of shells and plates. In: Truesdell C (ed) Linear theories of elasticity and thermoelasticity: linear and nonlinear theories of rods, plates, and shells. Springer, Berlin, pp 425–640
54.
Zurück zum Zitat Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282MATH Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282MATH
55.
Zurück zum Zitat Papoulia KD (2017) Non-differentiable energy minimization for cohesive fracture. Int J Fract 204(2):143–158 Papoulia KD (2017) Non-differentiable energy minimization for cohesive fracture. Int J Fract 204(2):143–158
56.
57.
Zurück zum Zitat Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3d fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200(1):326–344MathSciNetMATH Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3d fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200(1):326–344MathSciNetMATH
58.
Zurück zum Zitat Ravi-Chandar K, Knauss W G (1984) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154 Ravi-Chandar K, Knauss W G (1984) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154
59.
Zurück zum Zitat Reali A, Hughes TJ R (2015) An introduction to isogeometric collocation methods. Springer, Vienna, pp 173–204MATH Reali A, Hughes TJ R (2015) An introduction to isogeometric collocation methods. Springer, Vienna, pp 173–204MATH
60.
Zurück zum Zitat Reinoso J, Paggi M, Linder C (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Comput Mech 59(6):981–1001MathSciNetMATH Reinoso J, Paggi M, Linder C (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Comput Mech 59(6):981–1001MathSciNetMATH
61.
Zurück zum Zitat Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31(1):69–77MATH Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31(1):69–77MATH
62.
Zurück zum Zitat Sahu A, Sauer RA, Mandadapu KK (2017) Irreversible thermodynamics of curved lipid membranes. Phys Rev E 96:042409 Sahu A, Sauer RA, Mandadapu KK (2017) Irreversible thermodynamics of curved lipid membranes. Phys Rev E 96:042409
63.
Zurück zum Zitat Sargado JM, Keilegavlen E, Berre I, Nordbotten JM (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458–489MathSciNet Sargado JM, Keilegavlen E, Berre I, Nordbotten JM (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458–489MathSciNet
64.
Zurück zum Zitat Sauer RA (2018) On the computational modeling of lipid bilayers using thin-shell theory. In: Steigmann DJ (ed) The role of mechanics in the study of lipid bilayers. Springer, Cham, pp 221–286 Sauer RA (2018) On the computational modeling of lipid bilayers using thin-shell theory. In: Steigmann DJ (ed) The role of mechanics in the study of lipid bilayers. Springer, Cham, pp 221–286
65.
Zurück zum Zitat Sauer RA, Duong TX (2017) On the theoretical foundations of thin solid and liquid shells. Math Mech Solids 22(3):343–371MathSciNetMATH Sauer RA, Duong TX (2017) On the theoretical foundations of thin solid and liquid shells. Math Mech Solids 22(3):343–371MathSciNetMATH
66.
Zurück zum Zitat Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68MathSciNetMATH Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68MathSciNetMATH
67.
Zurück zum Zitat Sauer RA, Duong TX, Mandadapu KK, Steigmann DJ (2017) A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J Comput Phys 330:436–466MathSciNetMATH Sauer RA, Duong TX, Mandadapu KK, Steigmann DJ (2017) A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J Comput Phys 330:436–466MathSciNetMATH
68.
Zurück zum Zitat Schillinger D, Borden MJ, Stolarski HK (2015) Isogeometric collocation for phase-field fracture models. Isogeometric analysis special issue. Comput Methods Appl Mech Eng 284:583–610MATH Schillinger D, Borden MJ, Stolarski HK (2015) Isogeometric collocation for phase-field fracture models. Isogeometric analysis special issue. Comput Methods Appl Mech Eng 284:583–610MATH
69.
Zurück zum Zitat Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54(5):1141–1161MathSciNetMATH Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54(5):1141–1161MathSciNetMATH
70.
Zurück zum Zitat Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484 Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484
71.
Zurück zum Zitat Steigmann DJ (1999) Fluid films with curvature elasticity. Arch Ration Mech Anal 150:127–152MathSciNetMATH Steigmann DJ (1999) Fluid films with curvature elasticity. Arch Ration Mech Anal 150:127–152MathSciNetMATH
72.
Zurück zum Zitat Ulmer H, Hofacker M, Miehe C (2012) Phase field modeling of fracture in plates and shells. PAMM 12(1):171–172 Ulmer H, Hofacker M, Miehe C (2012) Phase field modeling of fracture in plates and shells. PAMM 12(1):171–172
73.
Zurück zum Zitat Vavasis SA, Papoulia KD, Hirmand MR (2020) Second-order cone interior-point method for quasistatic and moderate dynamic cohesive fracture. Comput Methods Appl Mech Eng 358:112633MathSciNet Vavasis SA, Papoulia KD, Hirmand MR (2020) Second-order cone interior-point method for quasistatic and moderate dynamic cohesive fracture. Comput Methods Appl Mech Eng 358:112633MathSciNet
74.
Zurück zum Zitat Zhou S, Zhuang X (2018) Adaptive phase field simulation of quasi-static crack propagation in rocks. Computational modeling of fracture in geotechnical engineering part I. Undergr Sp 3(3):190–205 Zhou S, Zhuang X (2018) Adaptive phase field simulation of quasi-static crack propagation in rocks. Computational modeling of fracture in geotechnical engineering part I. Undergr Sp 3(3):190–205
75.
Zurück zum Zitat Zimmermann C, Sauer RA (2017) Adaptive local surface refinement based on LR NURBS and its application to contact. Comput Mech 60:1011–1031MathSciNetMATH Zimmermann C, Sauer RA (2017) Adaptive local surface refinement based on LR NURBS and its application to contact. Comput Mech 60:1011–1031MathSciNetMATH
76.
Zurück zum Zitat Zimmermann C, Toshniwal D, Landis CM, Hughes TJR, Mandadapu KK, Sauer RA (2019) An isogeometric finite element formulation for phase transitions on deforming surfaces. Comput Methods Appl Mech Eng 351:441–477MathSciNet Zimmermann C, Toshniwal D, Landis CM, Hughes TJR, Mandadapu KK, Sauer RA (2019) An isogeometric finite element formulation for phase transitions on deforming surfaces. Comput Methods Appl Mech Eng 351:441–477MathSciNet
Metadaten
Titel
An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS
verfasst von
Karsten Paul
Christopher Zimmermann
Kranthi K. Mandadapu
Thomas J. R. Hughes
Chad M. Landis
Roger A. Sauer
Publikationsdatum
21.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01807-y

Weitere Artikel der Ausgabe 4/2020

Computational Mechanics 4/2020 Zur Ausgabe