Skip to main content
Erschienen in: Computational Mechanics 3/2021

20.01.2021 | Original Paper

Stabilized methods for high-speed compressible flows: toward hypersonic simulations

verfasst von: David Codoni, Georgios Moutsanidis, Ming-Chen Hsu, Yuri Bazilevs, Craig Johansen, Artem Korobenko

Erschienen in: Computational Mechanics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A stabilized finite element framework for high-speed compressible flows is presented. The Streamline-Upwind/Petrov–Galerkin formulation augmented with discontinuity-capturing (DC) are the main constituents of the framework that enable accurate, efficient, and stable simulations in this flow regime. Full- and reduced-energy formulations are employed for this class of flow problems and their relative accuracy is assessed. In addition, a recently developed DC formulation is presented and is shown to be particularly well suited for hypersonic flows. Several verification and validation cases, ranging from 1D to 3D flows and supersonic to the hypersonic regimes, show the excellent performance of the proposed framework and set the stage for its deployment on more advanced applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ahrabi BR, Mavriplis DJ (2020) An implicit block ilu smoother for preconditioning of Newton–Krylov solvers with application in high-order stabilized finite-element methods. Comput Methods Appl Mech Eng 358:112637MathSciNetMATH Ahrabi BR, Mavriplis DJ (2020) An implicit block ilu smoother for preconditioning of Newton–Krylov solvers with application in high-order stabilized finite-element methods. Comput Methods Appl Mech Eng 358:112637MathSciNetMATH
2.
Zurück zum Zitat Aliabadi SK, Tezduyar TE (1993) Space-time finite element computation of compressible flows involving moving boundaries and interfaces. Comput Methods Appl Mech Eng 107(1–2):209–223MATH Aliabadi SK, Tezduyar TE (1993) Space-time finite element computation of compressible flows involving moving boundaries and interfaces. Comput Methods Appl Mech Eng 107(1–2):209–223MATH
3.
Zurück zum Zitat Almeida RC, Galeão AC (1996) An adaptive Petrov–Galerkin formulation for the compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 129(1):157–176MathSciNetMATH Almeida RC, Galeão AC (1996) An adaptive Petrov–Galerkin formulation for the compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 129(1):157–176MathSciNetMATH
4.
Zurück zum Zitat Arisman CJ, Johansen CT, Bathel BF, Danehy PM (2015) Investigation of gas seeding for planar laser-induced fluorescence in hypersonic boundary layer. AIAA J 53(12):3637–3651 Arisman CJ, Johansen CT, Bathel BF, Danehy PM (2015) Investigation of gas seeding for planar laser-induced fluorescence in hypersonic boundary layer. AIAA J 53(12):3637–3651
5.
Zurück zum Zitat Baba K, Tabata M (1981) On a conservative upwind finite element scheme for the convective diffusion equations. RAIRO Analyse Numerique 15(1):3–25MathSciNetMATH Baba K, Tabata M (1981) On a conservative upwind finite element scheme for the convective diffusion equations. RAIRO Analyse Numerique 15(1):3–25MathSciNetMATH
6.
Zurück zum Zitat Bazilevs Y, Kamensky D, Moutsanidis G, Shende S (2020) Residual-based shock capturing in solids. Comput Methods Appl Mech Eng 358:112638MathSciNetMATH Bazilevs Y, Kamensky D, Moutsanidis G, Shende S (2020) Residual-based shock capturing in solids. Comput Methods Appl Mech Eng 358:112638MathSciNetMATH
8.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetMATH Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetMATH
9.
Zurück zum Zitat Celik IB et al (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 130(7):07 Celik IB et al (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 130(7):07
10.
Zurück zum Zitat Carter JE (1972) Numerical solutions of the Navier–Stokes equations for the supersonic laminar flow over a two-dimensional compression corner. Technical report, nasa-tr-r-385, NASA Langley Research Center; Hampton, VA, United States Carter JE (1972) Numerical solutions of the Navier–Stokes equations for the supersonic laminar flow over a two-dimensional compression corner. Technical report, nasa-tr-r-385, NASA Langley Research Center; Hampton, VA, United States
11.
Zurück zum Zitat Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476MathSciNetMATH Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476MathSciNetMATH
12.
Zurück zum Zitat Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG stabilization parameters computed from degree-of-freedom submatrices. Comput Mech 38:334–343MATH Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG stabilization parameters computed from degree-of-freedom submatrices. Comput Mech 38:334–343MATH
13.
Zurück zum Zitat Chalot F, Hughes TJR (1994) A consistent equilibrium chemistry algorithm for hypersonic flows. Comput Methods Appl Mech Eng 112:25–40MATH Chalot F, Hughes TJR (1994) A consistent equilibrium chemistry algorithm for hypersonic flows. Comput Methods Appl Mech Eng 112:25–40MATH
14.
Zurück zum Zitat Chalot F, Hughes TJR, Shakib F (1990) Symmetrization of conservation laws with entropy for high-temperature hypersonic computations. Comput Syst Eng 1(2–4):495–521 Chalot F, Hughes TJR, Shakib F (1990) Symmetrization of conservation laws with entropy for high-temperature hypersonic computations. Comput Syst Eng 1(2–4):495–521
15.
Zurück zum Zitat Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases. Cambridge University Press, CambridgeMATH Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases. Cambridge University Press, CambridgeMATH
16.
Zurück zum Zitat Danehy P, Bathel B, Ivey C, Inman J, Jones S (2009) NO PLIF study of hypersonic transition over a discrete hemispherical roughness element. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition Danehy P, Bathel B, Ivey C, Inman J, Jones S (2009) NO PLIF study of hypersonic transition over a discrete hemispherical roughness element. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition
17.
Zurück zum Zitat Denman ED, Beavers AN (1976) The matrix sign function and computations in systems. Appl Math Comput 2(1):63–94MathSciNetMATH Denman ED, Beavers AN (1976) The matrix sign function and computations in systems. Appl Math Comput 2(1):63–94MathSciNetMATH
18.
Zurück zum Zitat Dick E (2009) Introduction to finite element methods in computational fluid dynamics. In: Wendt JF (ed) Computational fluid dynamics, chapter 10. Springer, Berlin Dick E (2009) Introduction to finite element methods in computational fluid dynamics. In: Wendt JF (ed) Computational fluid dynamics, chapter 10. Springer, Berlin
19.
Zurück zum Zitat Dumbser M, Moschetta JM, Gressier J (2003) A matrix stability analysis of the carbuncle phenomenon. J Comput Phys 197:647–670MATH Dumbser M, Moschetta JM, Gressier J (2003) A matrix stability analysis of the carbuncle phenomenon. J Comput Phys 197:647–670MATH
20.
Zurück zum Zitat Edquist KT (2006) Computations of Viking Lander capsule hypersonic aerodynamics with comparisons to ground and flight data. In: AIAA atmospheric flight mechanics conference and exhibit Edquist KT (2006) Computations of Viking Lander capsule hypersonic aerodynamics with comparisons to ground and flight data. In: AIAA atmospheric flight mechanics conference and exhibit
21.
Zurück zum Zitat Elling V (2009) The carbuncle phenomenon is incurable. Acta Mathematica Scientia 29(6):1647–1656MathSciNetMATH Elling V (2009) The carbuncle phenomenon is incurable. Acta Mathematica Scientia 29(6):1647–1656MathSciNetMATH
22.
Zurück zum Zitat Flaherty T (1972) Aerodynamics data book, ver-10. TR-3709014, Martin Marietta Corporation, Denver Division Flaherty T (1972) Aerodynamics data book, ver-10. TR-3709014, Martin Marietta Corporation, Denver Division
23.
Zurück zum Zitat Hauke G (2001) Simple stabilizing matrices for the computation of compressible flows in primitive variables. Comput Methods Appl Mech Eng 190:6881–6893MATH Hauke G (2001) Simple stabilizing matrices for the computation of compressible flows in primitive variables. Comput Methods Appl Mech Eng 190:6881–6893MATH
24.
Zurück zum Zitat Hauke G, Hughes TJR (1994) A unified approach to compressible and incompressible flows. Comput Methods Appl Mech Eng 113:389–395MathSciNetMATH Hauke G, Hughes TJR (1994) A unified approach to compressible and incompressible flows. Comput Methods Appl Mech Eng 113:389–395MathSciNetMATH
25.
Zurück zum Zitat Hauke G, Hughes TJR (1998) A comparative study of different sets of variables for solving compressible and incompressible flows. Comput Methods Appl Mech Eng 153:1–44MathSciNetMATH Hauke G, Hughes TJR (1998) A comparative study of different sets of variables for solving compressible and incompressible flows. Comput Methods Appl Mech Eng 153:1–44MathSciNetMATH
26.
Zurück zum Zitat Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, HobokenMATH Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, HobokenMATH
27.
Zurück zum Zitat Hollis BR (1996) Real-gas flow properties for NASA Langley research center aerothermodynamic facilities complex wind tunnels. Nasa contractor report 4755, NASA Langley Research Center; Hampton, VA, United States Hollis BR (1996) Real-gas flow properties for NASA Langley research center aerothermodynamic facilities complex wind tunnels. Nasa contractor report 4755, NASA Langley Research Center; Hampton, VA, United States
28.
Zurück zum Zitat Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII the Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189MathSciNetMATH Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII the Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189MathSciNetMATH
29.
Zurück zum Zitat Hughes TJR, Franca LP, Mallet M (1986) A new finite element formulation for computational fluid dynamics: I symmetric forms of the compressible Euler and Navier–Stokes equations and the second law of thermodynamics. Comput Methods Appl Mech Eng 54:223–234MathSciNetMATH Hughes TJR, Franca LP, Mallet M (1986) A new finite element formulation for computational fluid dynamics: I symmetric forms of the compressible Euler and Navier–Stokes equations and the second law of thermodynamics. Comput Methods Appl Mech Eng 54:223–234MathSciNetMATH
30.
Zurück zum Zitat Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI convergence anaysis of the generalized SUPG formulation for linear time-dependent multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 63:97–112MATH Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI convergence anaysis of the generalized SUPG formulation for linear time-dependent multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 63:97–112MATH
31.
Zurück zum Zitat Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III the generalized streamline operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58:305–328MathSciNetMATH Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III the generalized streamline operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58:305–328MathSciNetMATH
32.
Zurück zum Zitat Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: IV a discontinuity-capturing operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58:329–336MathSciNetMATH Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: IV a discontinuity-capturing operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58:329–336MathSciNetMATH
33.
Zurück zum Zitat Hughes TJR, Mallet M, Mizukami A (1986) A new finite element formulation for computational fluid dynamics: II beyond SUPG. Comput Methods Appl Mech Eng 54:341–355MathSciNetMATH Hughes TJR, Mallet M, Mizukami A (1986) A new finite element formulation for computational fluid dynamics: II beyond SUPG. Comput Methods Appl Mech Eng 54:341–355MathSciNetMATH
34.
Zurück zum Zitat Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284MathSciNetMATH Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284MathSciNetMATH
35.
Zurück zum Zitat Ingoldby RN, Michel FC, Flaherty TM, Doryand MG, Preston B, Villyard KW, Steele RD (1976) Entry data analysis for viking landers 1 and 2 final report. NASA CR-159388, Martin Marietta Corporation, Denver Division Ingoldby RN, Michel FC, Flaherty TM, Doryand MG, Preston B, Villyard KW, Steele RD (1976) Entry data analysis for viking landers 1 and 2 final report. NASA CR-159388, Martin Marietta Corporation, Denver Division
36.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319MathSciNetMATH Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319MathSciNetMATH
37.
Zurück zum Zitat Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, CambridgeMATH Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, CambridgeMATH
38.
Zurück zum Zitat Johnson C, Navert U, Pitkaranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45:285–312MathSciNetMATH Johnson C, Navert U, Pitkaranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45:285–312MathSciNetMATH
39.
Zurück zum Zitat Johnson C, Szepessy A (1987) On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math Comput 49(180):427–444MathSciNetMATH Johnson C, Szepessy A (1987) On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math Comput 49(180):427–444MathSciNetMATH
40.
Zurück zum Zitat Johnson C, Szepessy A, Hansbo P (1990) On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math Comput 54(189):107–129MathSciNetMATH Johnson C, Szepessy A, Hansbo P (1990) On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math Comput 54(189):107–129MathSciNetMATH
41.
Zurück zum Zitat Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321MathSciNetMATH Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321MathSciNetMATH
42.
Zurück zum Zitat Kirk BS, Stogner RH, Bauman PT, Oliver TA (2014) Modeling hypersonic entry with the fully-implicit Navier–Stokes (fin-s) stabilized finite element flow solver. Comput Fluids 92:281–292MathSciNetMATH Kirk BS, Stogner RH, Bauman PT, Oliver TA (2014) Modeling hypersonic entry with the fully-implicit Navier–Stokes (fin-s) stabilized finite element flow solver. Comput Fluids 92:281–292MathSciNetMATH
43.
Zurück zum Zitat Kozak N, Rajanna MR, Wu MCH, Murugan M, Bravo L, Ghoshal A, Hsu MC, Bazilevs Y (2020) Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies 13(17):4283 Kozak N, Rajanna MR, Wu MCH, Murugan M, Bravo L, Ghoshal A, Hsu MC, Bazilevs Y (2020) Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies 13(17):4283
44.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2019) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185MathSciNetMATH Kuraishi T, Takizawa K, Tezduyar TE (2019) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185MathSciNetMATH
45.
Zurück zum Zitat Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422MATH Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422MATH
46.
Zurück zum Zitat Le Beau GJ, Tezduyar TE (1991) Finite element computation of compressible flows with the SUPG formulation. Am Soc Mech Eng Fluids Eng Div Pub FED 123:21–27 Le Beau GJ, Tezduyar TE (1991) Finite element computation of compressible flows with the SUPG formulation. Am Soc Mech Eng Fluids Eng Div Pub FED 123:21–27
47.
Zurück zum Zitat Lewis JE (1967) Experimental investigation of supersonic laminar, two-dimensional boundary layer separation in a compression corner with and without cooling. Ph.D. thesis, California Institute of Technology Lewis JE (1967) Experimental investigation of supersonic laminar, two-dimensional boundary layer separation in a compression corner with and without cooling. Ph.D. thesis, California Institute of Technology
48.
Zurück zum Zitat Mazaheri A, Kleb B (2007) Exploring hypersonic, unstructured-grid issues through structured grids. In: 18th AIAA computational fluid dynamics conference Mazaheri A, Kleb B (2007) Exploring hypersonic, unstructured-grid issues through structured grids. In: 18th AIAA computational fluid dynamics conference
49.
Zurück zum Zitat Neufeld PD, Janzen AR, Aziz RA (1972) Empirical equations to calculate 16 of the transport collision integral \(\omega \) for the Lennard–Jones (12–6) potential. J Chem Phys 57(3):1100–1102 Neufeld PD, Janzen AR, Aziz RA (1972) Empirical equations to calculate 16 of the transport collision integral \(\omega \) for the Lennard–Jones (12–6) potential. J Chem Phys 57(3):1100–1102
50.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE (2020) Element length calculation in B-spline meshes for complex geometries. Comput Mech 65:1085–1103MathSciNetMATH Otoguro Y, Takizawa K, Tezduyar TE (2020) Element length calculation in B-spline meshes for complex geometries. Comput Mech 65:1085–1103MathSciNetMATH
51.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419MathSciNetMATH Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419MathSciNetMATH
52.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776MathSciNetMATH Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776MathSciNetMATH
53.
Zurück zum Zitat Saad Y, Schultz MH (1986) Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNetMATH Saad Y, Schultz MH (1986) Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNetMATH
54.
Zurück zum Zitat Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for a computational fluid dyamics: X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89:141–219 Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for a computational fluid dyamics: X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89:141–219
55.
Zurück zum Zitat Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservations laws. J Comput Phys 27:1–31MathSciNetMATH Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservations laws. J Comput Phys 27:1–31MathSciNetMATH
56.
Zurück zum Zitat Sturek WB, Ray S, Aliabadi S, Waters C, Tezduyar TE (1997) Parallel finite element computation of missile aerodynamics. Int J Numer Meth Fluids 24:1417–1432MATH Sturek WB, Ray S, Aliabadi S, Waters C, Tezduyar TE (1997) Parallel finite element computation of missile aerodynamics. Int J Numer Meth Fluids 24:1417–1432MATH
57.
Zurück zum Zitat Szepessy A (1989) Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math Comput 53(188):527–545MathSciNetMATH Szepessy A (1989) Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math Comput 53(188):527–545MathSciNetMATH
58.
Zurück zum Zitat Tabata M (1977) A finite element approximation corresponding to the upwind finite differencing. Mem Numer Math 4:47–63MathSciNetMATH Tabata M (1977) A finite element approximation corresponding to the upwind finite differencing. Mem Numer Math 4:47–63MathSciNetMATH
59.
Zurück zum Zitat Tabata M (1978) Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J Math Kyoto Univ 18(2):327–351MathSciNetMATH Tabata M (1978) Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J Math Kyoto Univ 18(2):327–351MathSciNetMATH
60.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kanai T (2017) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806MathSciNetMATH Takizawa K, Tezduyar TE, Kanai T (2017) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806MathSciNetMATH
61.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255MathSciNetMATH Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255MathSciNetMATH
62.
Zurück zum Zitat Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15MATH Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15MATH
63.
Zurück zum Zitat Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput Mech 62:1169–1186MathSciNetMATH Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput Mech 62:1169–1186MathSciNetMATH
64.
Zurück zum Zitat Takizawa K, Ueda Y, Tezduyar TE (2019) A node-numbering-invariant directional length scale for simplex elements. Math Models Methods Appl Sci 29:2719–2753MathSciNet Takizawa K, Ueda Y, Tezduyar TE (2019) A node-numbering-invariant directional length scale for simplex elements. Math Models Methods Appl Sci 29:2719–2753MathSciNet
65.
Zurück zum Zitat Tejada-Martínez AE, Akkerman I, Bazilevs Y (2012) Large-eddy simulation of shallow water Langmuir turbulence using isogeometric analysis and the residual-based variational multiscale method. J Appl Mech 79(1):010909 Tejada-Martínez AE, Akkerman I, Bazilevs Y (2012) Large-eddy simulation of shallow water Langmuir turbulence using isogeometric analysis and the residual-based variational multiscale method. J Appl Mech 79(1):010909
66.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412MATH Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412MATH
67.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36MATH Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36MATH
68.
Zurück zum Zitat Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177MATH Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177MATH
69.
Zurück zum Zitat Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference 2001 Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference 2001
70.
Zurück zum Zitat Tezduyar TE (2002) Calculation of the stabilization parameters in SUPG and PSPG formulations. In: Proceedings of the first South-American congress on computational mechanics Tezduyar TE (2002) Calculation of the stabilization parameters in SUPG and PSPG formulations. In: Proceedings of the first South-American congress on computational mechanics
71.
Zurück zum Zitat Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetMATH Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetMATH
72.
Zurück zum Zitat Tezduyar TE (2004) Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows. In: Proceedings of European congress on computational methods in applied sciences and engineering ECCOMAS 2004 Tezduyar TE (2004) Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows. In: Proceedings of European congress on computational methods in applied sciences and engineering ECCOMAS 2004
73.
Zurück zum Zitat Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, volume 3: fluids, chapter 17. Wiley, New York Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, volume 3: fluids, chapter 17. Wiley, New York
74.
Zurück zum Zitat Tezduyar TE (2005) Calculation of the stabilization parameters in finite element formulations of flow problems. In: Idelsohn SR, Sonzogni V (eds) Applications of computational mechanics in structures and fluids. CIMNE, Barcelona, pp 1–19 Tezduyar TE (2005) Calculation of the stabilization parameters in finite element formulations of flow problems. In: Idelsohn SR, Sonzogni V (eds) Applications of computational mechanics in structures and fluids. CIMNE, Barcelona, pp 1–19
75.
Zurück zum Zitat Tezduyar TE, Hughes TJR (1982) Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA technical report NASA-CR-204772 Tezduyar TE, Hughes TJR (1982) Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA technical report NASA-CR-204772
76.
Zurück zum Zitat Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: 21st aerospace sciences meeting, AIAA paper 83-0125 Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: 21st aerospace sciences meeting, AIAA paper 83-0125
77.
Zurück zum Zitat Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430MATH Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430MATH
78.
Zurück zum Zitat Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59:307–325MATH Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59:307–325MATH
79.
Zurück zum Zitat Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632MathSciNetMATH Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632MathSciNetMATH
80.
Zurück zum Zitat Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-capturing. Comput Fluids 36:147–159MATH Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-capturing. Comput Fluids 36:147–159MATH
81.
Zurück zum Zitat Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta \) shock-capturing. Comput Mech 38:469–481MATH Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta \) shock-capturing. Comput Mech 38:469–481MATH
83.
Zurück zum Zitat Xu F, Bazilevs Y, Hsu MC (2019) Immersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraft. Math Models Methods Appl Sci 29(5):905–938MathSciNetMATH Xu F, Bazilevs Y, Hsu MC (2019) Immersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraft. Math Models Methods Appl Sci 29(5):905–938MathSciNetMATH
84.
Zurück zum Zitat Xu F, Moutsanidis G, Kamensky D, Hsu MC, Murugan M, Ghoshal A, Bazilevs Y (2017) Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Comput Fluids 158:201–220MathSciNetMATH Xu F, Moutsanidis G, Kamensky D, Hsu MC, Murugan M, Ghoshal A, Bazilevs Y (2017) Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Comput Fluids 158:201–220MathSciNetMATH
Metadaten
Titel
Stabilized methods for high-speed compressible flows: toward hypersonic simulations
verfasst von
David Codoni
Georgios Moutsanidis
Ming-Chen Hsu
Yuri Bazilevs
Craig Johansen
Artem Korobenko
Publikationsdatum
20.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01963-6

Weitere Artikel der Ausgabe 3/2021

Computational Mechanics 3/2021 Zur Ausgabe

Neuer Inhalt