Skip to main content
Erschienen in: Soft Computing 3/2021

02.10.2020 | Methodologies and Application

Convolutional neural network–bagged decision tree: a hybrid approach to reduce electric vehicle’s driver’s range anxiety by estimating energy consumption in real-time

verfasst von: Shatrughan Modi, Jhilik Bhattacharya, Prasenjit Basak

Erschienen in: Soft Computing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To overcome range anxiety problem of electric vehicles (EVs), an accurate real-time energy consumption estimation is necessary, which can be used to provide the EV’s driver with information about the remaining range in real time. A hybrid CNN–BDT approach has been developed, in which convolutional neural network (CNN) is used to provide an energy consumption estimate considering the effect of temperature, wind speed, battery’s SOC, auxiliary loads, road elevation, vehicle speed and acceleration. Further, bagged decision tree (BDT) is used to fine-tune the estimate. Unlike existing techniques, the proposed approach does not require internal vehicle parameters from manufacturer and can easily learn complex patterns even from noisy data. The comparison results with existing techniques show that the developed approach provides better estimates with least mean absolute energy deviation of 0.14.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abu Arqub O (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610CrossRef Abu Arqub O (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610CrossRef
Zurück zum Zitat Abu Arqub O, AL-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302CrossRef Abu Arqub O, AL-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302CrossRef
Zurück zum Zitat Alvarez AD, Garcia FS, Naranjo JE, Anaya JJ, Jimenez F (2014) Modeling the driving behavior of electric vehicles using smartphones and neural networks. IEEE Intell Transp Syst Mag 6(3):44–53CrossRef Alvarez AD, Garcia FS, Naranjo JE, Anaya JJ, Jimenez F (2014) Modeling the driving behavior of electric vehicles using smartphones and neural networks. IEEE Intell Transp Syst Mag 6(3):44–53CrossRef
Zurück zum Zitat Arqub OA, Al-Smadi M (2020) Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput 24(16):12501–12522CrossRef Arqub OA, Al-Smadi M (2020) Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput 24(16):12501–12522CrossRef
Zurück zum Zitat Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206CrossRef Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206CrossRef
Zurück zum Zitat Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140MATH Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140MATH
Zurück zum Zitat Brooker A, Gonder J, Wang L, Wood E, Lopp S, Ramroth L (2015) Fastsim: a model to estimate vehicle efficiency, cost and performance. In: SAE 2015 World Congress & Exhibition. SAE International Brooker A, Gonder J, Wang L, Wood E, Lopp S, Ramroth L (2015) Fastsim: a model to estimate vehicle efficiency, cost and performance. In: SAE 2015 World Congress & Exhibition. SAE International
Zurück zum Zitat Burress T (2012) Benchmarking of competitive technologies. Oak Ridge National Laboratory Burress T (2012) Benchmarking of competitive technologies. Oak Ridge National Laboratory
Zurück zum Zitat Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289CrossRef Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289CrossRef
Zurück zum Zitat Carley S, Krause RM, Lane BW, Graham JD (2013) Intent to purchase a plug-in electric vehicle: a survey of early impressions in large us cites. Transp Res Part D Transp Environ 18:39–45CrossRef Carley S, Krause RM, Lane BW, Graham JD (2013) Intent to purchase a plug-in electric vehicle: a survey of early impressions in large us cites. Transp Res Part D Transp Environ 18:39–45CrossRef
Zurück zum Zitat Dai H, Guo P, Wei X, Sun Z, Wang J (2015) Anfis (adaptive neuro-fuzzy inference system) based online soc (state of charge) correction considering cell divergence for the ev (electric vehicle) traction batteries. Energy 80:350–360CrossRef Dai H, Guo P, Wei X, Sun Z, Wang J (2015) Anfis (adaptive neuro-fuzzy inference system) based online soc (state of charge) correction considering cell divergence for the ev (electric vehicle) traction batteries. Energy 80:350–360CrossRef
Zurück zum Zitat De Cauwer C, Verbeke W, Coosemans T, Faid S, Van Mierlo J (2017) A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies 10(5):608CrossRef De Cauwer C, Verbeke W, Coosemans T, Faid S, Van Mierlo J (2017) A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies 10(5):608CrossRef
Zurück zum Zitat Devineau G, Moutarde F, Xi W, Yang J (2018) Deep learning for hand gesture recognition on skeletal data. In: 2018 13th IEEE international conference on automatic Face Gesture Recognition (FG 2018), pp 106–113 Devineau G, Moutarde F, Xi W, Yang J (2018) Deep learning for hand gesture recognition on skeletal data. In: 2018 13th IEEE international conference on automatic Face Gesture Recognition (FG 2018), pp 106–113
Zurück zum Zitat Energy Efficiency & Renewable Energy Vehicle Technologies Program (2013) 2013 Nissan Leaf advanced vehicle testing—baseline testing results. Tech. rep., U.S. Department of Energy Energy Efficiency & Renewable Energy Vehicle Technologies Program (2013) 2013 Nissan Leaf advanced vehicle testing—baseline testing results. Tech. rep., U.S. Department of Energy
Zurück zum Zitat Felipe J, Amarillo JC, Naranjo JE, Serradilla F, Diaz A (2015) Energy consumption estimation in electric vehicles considering driving style. In: 2015 IEEE 18th international conference on intelligent transportation systems, pp 101–106 Felipe J, Amarillo JC, Naranjo JE, Serradilla F, Diaz A (2015) Energy consumption estimation in electric vehicles considering driving style. In: 2015 IEEE 18th international conference on intelligent transportation systems, pp 101–106
Zurück zum Zitat Feng W, Figliozzi M (2013) An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: a case study from the usa market. Transp Res Part C Emerg Technol 26:135–145CrossRef Feng W, Figliozzi M (2013) An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: a case study from the usa market. Transp Res Part C Emerg Technol 26:135–145CrossRef
Zurück zum Zitat Fetene GM, Kaplan S, Mabit SL, Jensen AF, Prato CG (2017) Harnessing big data for estimating the energy consumption and driving range of electric vehicles. Transp Res Part D Transp Environ 54(Supplement C):1–11CrossRef Fetene GM, Kaplan S, Mabit SL, Jensen AF, Prato CG (2017) Harnessing big data for estimating the energy consumption and driving range of electric vehicles. Transp Res Part D Transp Environ 54(Supplement C):1–11CrossRef
Zurück zum Zitat Fiori C, Ahn K, Rakha HA (2016) Power-based electric vehicle energy consumption model: model development and validation. Appl Energy 168(Supplement C):257–268CrossRef Fiori C, Ahn K, Rakha HA (2016) Power-based electric vehicle energy consumption model: model development and validation. Appl Energy 168(Supplement C):257–268CrossRef
Zurück zum Zitat Galvin R (2017) Energy consumption effects of speed and acceleration in electric vehicles: laboratory case studies and implications for drivers and policymakers. Transp Res Part D Transp Environ 53(Supplement C):234–248CrossRef Galvin R (2017) Energy consumption effects of speed and acceleration in electric vehicles: laboratory case studies and implications for drivers and policymakers. Transp Res Part D Transp Environ 53(Supplement C):234–248CrossRef
Zurück zum Zitat Gao DW, Mi C, Emadi A (2007) Modeling and simulation of electric and hybrid vehicles. Proc IEEE 95(4):729–745CrossRef Gao DW, Mi C, Emadi A (2007) Modeling and simulation of electric and hybrid vehicles. Proc IEEE 95(4):729–745CrossRef
Zurück zum Zitat Genikomsakis KN, Mitrentsis G (2017) A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. Transp Res Part D Transp Environ 50(Supplement C):98–118CrossRef Genikomsakis KN, Mitrentsis G (2017) A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. Transp Res Part D Transp Environ 50(Supplement C):98–118CrossRef
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256
Zurück zum Zitat Grubwinkler S, Brunner T, Lienkamp M (2014) Range prediction for EVs via crowd-sourcing. In: IEEE Vehicle Power and Propulsion Conference (VPPC), pp 1–6 Grubwinkler S, Brunner T, Lienkamp M (2014) Range prediction for EVs via crowd-sourcing. In: IEEE Vehicle Power and Propulsion Conference (VPPC), pp 1–6
Zurück zum Zitat Hackbarth A, Madlener R (2013) Consumer preferences for alternative fuel vehicles: a discrete choice analysis. Transp Res Part D Transp Environ 25:5–17CrossRef Hackbarth A, Madlener R (2013) Consumer preferences for alternative fuel vehicles: a discrete choice analysis. Transp Res Part D Transp Environ 25:5–17CrossRef
Zurück zum Zitat Halmeaho T, Rahkola P, Tammi K, Pippuri J, Pellikka AP, Manninen A, Ruotsalainen S (2017) Experimental validation of electric bus powertrain model under city driving cycles. IET Electr Syst Transp 7(1):74–83CrossRef Halmeaho T, Rahkola P, Tammi K, Pippuri J, Pellikka AP, Manninen A, Ruotsalainen S (2017) Experimental validation of electric bus powertrain model under city driving cycles. IET Electr Syst Transp 7(1):74–83CrossRef
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778
Zurück zum Zitat Kalapanidas E, Avouris N, Craciun M, Neagu D (2003) Machine learning algorithms: a study on noise sensitivity. In: Proceedings of 1st Balcan Conference in Informatics, pp 356–365 Kalapanidas E, Avouris N, Craciun M, Neagu D (2003) Machine learning algorithms: a study on noise sensitivity. In: Proceedings of 1st Balcan Conference in Informatics, pp 356–365
Zurück zum Zitat Kularatna N (2014) Rechargeable battery technologies: an electronic engineer’s view point. In: Energy storage devices for electronic systems: rechargeable batteries and supercapacitors. Elsevier, pp 29–61 Kularatna N (2014) Rechargeable battery technologies: an electronic engineer’s view point. In: Energy storage devices for electronic systems: rechargeable batteries and supercapacitors. Elsevier, pp 29–61
Zurück zum Zitat Liu K, Wang J, Yamamoto T, Morikawa T (2016) Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles. Appl Energy 183(Supplement C):1351–1360CrossRef Liu K, Wang J, Yamamoto T, Morikawa T (2016) Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles. Appl Energy 183(Supplement C):1351–1360CrossRef
Zurück zum Zitat Liu K, Yamamoto T, Morikawa T (2017) Impact of road gradient on energy consumption of electric vehicles. Transp Res Part D Transp Environ 54(Supplement C):74–81 Liu K, Yamamoto T, Morikawa T (2017) Impact of road gradient on energy consumption of electric vehicles. Transp Res Part D Transp Environ 54(Supplement C):74–81
Zurück zum Zitat Liu K, Wang J, Yamamoto T, Morikawa T (2018) Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. Appl Energy 227:324–331 transformative Innovations for a Sustainable Future—Part IIICrossRef Liu K, Wang J, Yamamoto T, Morikawa T (2018) Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. Appl Energy 227:324–331 transformative Innovations for a Sustainable Future—Part IIICrossRef
Zurück zum Zitat Ma X, Dai Z, He Z, Ma J, Wang YYY, Wang YYY (2017) Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors (Switzerland) 17(4):818CrossRef Ma X, Dai Z, He Z, Ma J, Wang YYY, Wang YYY (2017) Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors (Switzerland) 17(4):818CrossRef
Zurück zum Zitat Manzetti S, Mariasiu F (2015) Electric vehicle battery technologies: from present state to future systems. Renew Sustain Energy Rev 51:1004–1012CrossRef Manzetti S, Mariasiu F (2015) Electric vehicle battery technologies: from present state to future systems. Renew Sustain Energy Rev 51:1004–1012CrossRef
Zurück zum Zitat Modi S, Bhattacharya J, Basak P (2020) Estimation of energy consumption of electric vehicles using deep convolutional neural network to reduce driver’s range anxiety. ISA Trans 98:454–470CrossRef Modi S, Bhattacharya J, Basak P (2020) Estimation of energy consumption of electric vehicles using deep convolutional neural network to reduce driver’s range anxiety. ISA Trans 98:454–470CrossRef
Zurück zum Zitat Qi X, Wu G, Boriboonsomsin K, Barth MJ (2018) Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions. Transp Res Part D Transp Environ 64:36–52 the contribution of electric vehicles to environmental challenges in transport. WCTRS conference in summerCrossRef Qi X, Wu G, Boriboonsomsin K, Barth MJ (2018) Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions. Transp Res Part D Transp Environ 64:36–52 the contribution of electric vehicles to environmental challenges in transport. WCTRS conference in summerCrossRef
Zurück zum Zitat Shen WX, Chan CC, Lo EWC, Chau KT (2002) Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles. IEEE Trans Ind Electron 49(3):677–684CrossRef Shen WX, Chan CC, Lo EWC, Chau KT (2002) Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles. IEEE Trans Ind Electron 49(3):677–684CrossRef
Zurück zum Zitat Sweeting WJ, Hutchinson AR, Savage SD (2011) Factors affecting electric vehicle energy consumption. Int J Sustain Eng 4(3):192–201CrossRef Sweeting WJ, Hutchinson AR, Savage SD (2011) Factors affecting electric vehicle energy consumption. Int J Sustain Eng 4(3):192–201CrossRef
Zurück zum Zitat Wolff S, Madlener R (2019) Driven by change: commercial driver’s acceptance and efficiency perceptions of light-duty electric vehicle usage in Germany. Transp Res Part C Emerg Technol 105:262–282CrossRef Wolff S, Madlener R (2019) Driven by change: commercial driver’s acceptance and efficiency perceptions of light-duty electric vehicle usage in Germany. Transp Res Part C Emerg Technol 105:262–282CrossRef
Zurück zum Zitat Wu X, Freese D, Cabrera A, Kitch WA (2015) Electric vehicle’s energy consumption measurement and estimation. Transp Res Part D Transp Environ 34:52–67CrossRef Wu X, Freese D, Cabrera A, Kitch WA (2015) Electric vehicle’s energy consumption measurement and estimation. Transp Res Part D Transp Environ 34:52–67CrossRef
Zurück zum Zitat Yang S, Li M, Lin Y, Tang T (2014) Electric vehicle’s electricity consumption on a road with different slope. Physica A 402:41–48 Yang S, Li M, Lin Y, Tang T (2014) Electric vehicle’s electricity consumption on a road with different slope. Physica A 402:41–48
Zurück zum Zitat Yi Z, Bauer PH (2017) Effects of environmental factors on electric vehicle energy consumption: a sensitivity analysis. IET Electr Syst Transp 7(10):3–13CrossRef Yi Z, Bauer PH (2017) Effects of environmental factors on electric vehicle energy consumption: a sensitivity analysis. IET Electr Syst Transp 7(10):3–13CrossRef
Zurück zum Zitat Zhang R, Yao E (2015) Electric vehicle’s energy consumption estimation with real driving condition data. Transp Res Part D Transp Environ 41(Supplement C):177–187CrossRef Zhang R, Yao E (2015) Electric vehicle’s energy consumption estimation with real driving condition data. Transp Res Part D Transp Environ 41(Supplement C):177–187CrossRef
Zurück zum Zitat Zhang H, Song X, Xia T, Yuan M, Fan Z, Shibasaki R, Liang Y (2018) Battery electric vehicles in Japan: human mobile behavior based adoption potential analysis and policy target response. Appl Energy 220:527–535CrossRef Zhang H, Song X, Xia T, Yuan M, Fan Z, Shibasaki R, Liang Y (2018) Battery electric vehicles in Japan: human mobile behavior based adoption potential analysis and policy target response. Appl Energy 220:527–535CrossRef
Metadaten
Titel
Convolutional neural network–bagged decision tree: a hybrid approach to reduce electric vehicle’s driver’s range anxiety by estimating energy consumption in real-time
verfasst von
Shatrughan Modi
Jhilik Bhattacharya
Prasenjit Basak
Publikationsdatum
02.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 3/2021
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-020-05310-y

Weitere Artikel der Ausgabe 3/2021

Soft Computing 3/2021 Zur Ausgabe

Premium Partner