Skip to main content
Erschienen in: Soft Computing 12/2022

01.04.2022 | Optimization

Performance enhancement of meta-heuristics through random mutation and simulated annealing-based selection for concurrent topology and sizing optimization of truss structures

verfasst von: Sumit Kumar, Ghanshyam G. Tejani, Nantiwat Pholdee, Sujin Bureerat

Erschienen in: Soft Computing | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present investigation includes the performance enhancement concept of discrete meta-heuristics (MHs) for truss design with concurrent size and topology optimization. The five basic MHs, viz. teaching–learning-based optimization (TLBO), whale optimization algorithm (WOA), dragonfly algorithm (DA), heat transfer search (HTS), and ant lion optimization (ALO) algorithm, are investigated. Often these MHs found incompetent in answering complex problems like concurrent topology and sizing optimization of truss structures due to their poor convergence rate, local optima trap, and higher computation time. Also, the balance between diversification and intensification is very significant for MHs efficiency. A mutation is a strong strategy for balancing the diversification and intensification of MHs and can assist in guiding the population towards the global optimum. Moreover, population diversity can be improved by incorporating the selection of simulated annealing that can reduce the chances of local optima tarp. Therefore, an effective search technique based on a random mutation search along with simulated annealing-based selection is developed. Here, five modified MHs, i.e. the modified DA (MDA), modified ALO (MALO), modified WOA (MWOA), modified HTS (MHTS), and modified TLBO (MTLBO) algorithms, using random mutation search phase and SA-based selection are proposed. The developed techniques are implemented on three standard test problems where dynamic and static constraints and multiple load cases are imposed. The comparative performance of the proposed algorithms and their original algorithms is carried out. An empirical evaluation was done using Friedman rank, and the respective algorithms ranks are assigned. The findings reveal that the new technique results in significant performance enhancement of the various MHs by synchronizing the diversification and intensification of search.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734CrossRef Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734CrossRef
Zurück zum Zitat Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness–Application to truss structures. Comput Struct 89(11–12):1131–1141CrossRef Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness–Application to truss structures. Comput Struct 89(11–12):1131–1141CrossRef
Zurück zum Zitat Bureerat S, Pholdee N (2016) Optimal truss sizing using an adaptive differential evolution algorithm. J Comput Civ Eng 30(2):04015019CrossRef Bureerat S, Pholdee N (2016) Optimal truss sizing using an adaptive differential evolution algorithm. J Comput Civ Eng 30(2):04015019CrossRef
Zurück zum Zitat Črepinšek M, Liu SH, Mernik L (2012) A note on teaching–learning-based optimization algorithm. Inf Sci 212:79–93CrossRef Črepinšek M, Liu SH, Mernik L (2012) A note on teaching–learning-based optimization algorithm. Inf Sci 212:79–93CrossRef
Zurück zum Zitat De Falco I, Della Cioppa A, Tarantino E (2002) Mutation-based genetic algorithm: performance evaluation. Appl Soft Comput 1(4):285–299CrossRef De Falco I, Della Cioppa A, Tarantino E (2002) Mutation-based genetic algorithm: performance evaluation. Appl Soft Comput 1(4):285–299CrossRef
Zurück zum Zitat Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465MATHCrossRef Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465MATHCrossRef
Zurück zum Zitat Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92:229–241CrossRef Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92:229–241CrossRef
Zurück zum Zitat Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRef Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRef
Zurück zum Zitat Dorn W (1964) Automatic design of optimal structures. J De Mecanique 3:25–52 Dorn W (1964) Automatic design of optimal structures. J De Mecanique 3:25–52
Zurück zum Zitat Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166CrossRef Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166CrossRef
Zurück zum Zitat Fang H, Zhu G, Stojanovic V, Nie R, He S, Luan X, Liu F (2021) Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics. Int J Robust Nonlinear Control 31(6):2126–2140MathSciNetCrossRef Fang H, Zhu G, Stojanovic V, Nie R, He S, Luan X, Liu F (2021) Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics. Int J Robust Nonlinear Control 31(6):2126–2140MathSciNetCrossRef
Zurück zum Zitat Feng X, Liu Y, Yu H, Luo F (2019) Physarum-energy optimization algorithm. Soft Comput 23(3):871–888MATH Feng X, Liu Y, Yu H, Luo F (2019) Physarum-energy optimization algorithm. Soft Comput 23(3):871–888MATH
Zurück zum Zitat Ghasemi-Marzbali A (2020) A novel nature-inspired meta-heuristic algorithm for optimization: bear smell search algorithm. Soft Comput 24(17):13003–13035CrossRef Ghasemi-Marzbali A (2020) A novel nature-inspired meta-heuristic algorithm for optimization: bear smell search algorithm. Soft Comput 24(17):13003–13035CrossRef
Zurück zum Zitat Gholizadeh S, Barzegar A (2013) Shape optimization of structures for frequency constraints by sequential harmony search algorithm. Eng Optim 45(6):627–646MathSciNetCrossRef Gholizadeh S, Barzegar A (2013) Shape optimization of structures for frequency constraints by sequential harmony search algorithm. Eng Optim 45(6):627–646MathSciNetCrossRef
Zurück zum Zitat Gholizadeh S, Milany A (2018) An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures. Eng Optim 50(11):1829–1849MathSciNetCrossRef Gholizadeh S, Milany A (2018) An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures. Eng Optim 50(11):1829–1849MathSciNetCrossRef
Zurück zum Zitat Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38(1):957–968CrossRef Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38(1):957–968CrossRef
Zurück zum Zitat Gonçalves MS, Lopez RH, Miguel LFF (2015) Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput Struct 153:165–184CrossRef Gonçalves MS, Lopez RH, Miguel LFF (2015) Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput Struct 153:165–184CrossRef
Zurück zum Zitat Kaveh A, Kalatjari V (2003) Topology optimization of trusses using genetic algorithm, force method and graph theory. Int J Numer Meth Eng 58(5):771–791MATHCrossRef Kaveh A, Kalatjari V (2003) Topology optimization of trusses using genetic algorithm, force method and graph theory. Int J Numer Meth Eng 58(5):771–791MATHCrossRef
Zurück zum Zitat Kaveh A, Zolghadr A (2013) Topology optimization of trusses considering static and dynamic constraints using the CSS. Appl Soft Comput 13(5):2727–2734CrossRef Kaveh A, Zolghadr A (2013) Topology optimization of trusses considering static and dynamic constraints using the CSS. Appl Soft Comput 13(5):2727–2734CrossRef
Zurück zum Zitat Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 130:10–21CrossRef Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 130:10–21CrossRef
Zurück zum Zitat Kaveh A, Hassani B, Shojaee S, Tavakkoli SM (2008) Structural topology optimization using ant colony methodology. Eng Struct 30(9):2559–2565CrossRef Kaveh A, Hassani B, Shojaee S, Tavakkoli SM (2008) Structural topology optimization using ant colony methodology. Eng Struct 30(9):2559–2565CrossRef
Zurück zum Zitat Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput 23(5):1699–1722CrossRef Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput 23(5):1699–1722CrossRef
Zurück zum Zitat Kumar S, Tejani GG, Mirjalili S (2019) Modified symbiotic organisms search for structural optimization. Engineering with Computers 35(4):1269–1296CrossRef Kumar S, Tejani GG, Mirjalili S (2019) Modified symbiotic organisms search for structural optimization. Engineering with Computers 35(4):1269–1296CrossRef
Zurück zum Zitat Kumar S, Tejani GG, Pholdee N, Bureerat S (2020) Improved metaheuristics through migration-based search and an acceptance probability for truss optimization. Asian Journal of Civil Engineering 21(7):1217–1237CrossRef Kumar S, Tejani GG, Pholdee N, Bureerat S (2020) Improved metaheuristics through migration-based search and an acceptance probability for truss optimization. Asian Journal of Civil Engineering 21(7):1217–1237CrossRef
Zurück zum Zitat Kumar S, Tejani GG, Pholdee N, Bureerat S (2021d) Multi-objective modified heat transfer search for truss optimization. Engineering with Computers 37(4):3439–3454CrossRef Kumar S, Tejani GG, Pholdee N, Bureerat S (2021d) Multi-objective modified heat transfer search for truss optimization. Engineering with Computers 37(4):3439–3454CrossRef
Zurück zum Zitat Kumar, S., Tejani, G. G., Pholdee, N., Bureerat, S., & Jangir, P. (2021a). Multi-objective teaching-learning-based optimization for structure optimization. Smart Science, 1–12. Kumar, S., Tejani, G. G., Pholdee, N., Bureerat, S., & Jangir, P. (2021a). Multi-objective teaching-learning-based optimization for structure optimization. Smart Science, 1–12.
Zurück zum Zitat Kumar, S., Jangir, P., Tejani, G. G., Premkumar, M., & Alhelou, H. H. (2021b). MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems. IEEE Access. Kumar, S., Jangir, P., Tejani, G. G., Premkumar, M., & Alhelou, H. H. (2021b). MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems. IEEE Access.
Zurück zum Zitat Kumar, S., Tejani, G. G., Pholdee, N., & Bureerat, S. (2021c). Multiobjecitve structural optimization using improved heat transfer search. Knowledge-Based Systems, 219, 106811. Kumar, S., Tejani, G. G., Pholdee, N., & Bureerat, S. (2021c). Multiobjecitve structural optimization using improved heat transfer search. Knowledge-Based Systems219, 106811.
Zurück zum Zitat Kumar, S., Tejani, G. G., Pholdee, N., Bureerat, S., & Mehta, P. (2021e). Hybrid Heat Transfer Search and Passing Vehicle Search optimizer for multi-objective structural optimization. Knowledge-Based Systems, 212, 106556. Kumar, S., Tejani, G. G., Pholdee, N., Bureerat, S., & Mehta, P. (2021e). Hybrid Heat Transfer Search and Passing Vehicle Search optimizer for multi-objective structural optimization. Knowledge-Based Systems212, 106556.
Zurück zum Zitat Kumar, S., Tejani, G. G., Pholdee, N., & Bureerat, S. (2021f) Multi-Objective Passing Vehicle Search algorithm for structure optimization. Expert Systems with Applications, 169, 114511. Kumar, S., Tejani, G. G., Pholdee, N., & Bureerat, S. (2021f) Multi-Objective Passing Vehicle Search algorithm for structure optimization. Expert Systems with Applications169, 114511.
Zurück zum Zitat Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86(19–20):1936–1953CrossRef Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86(19–20):1936–1953CrossRef
Zurück zum Zitat Li L, Liu F (2011) Group search optimization for applications in structural design, vol 9. Springer, Berlin, GermanyMATH Li L, Liu F (2011) Group search optimization for applications in structural design, vol 9. Springer, Berlin, GermanyMATH
Zurück zum Zitat Li Z, Zhang X, Qin J, He J (2020) A reformative teaching–learning-based optimization algorithm for solving numerical and engineering design optimization problems. Soft Comput 24(20):15889–15906CrossRef Li Z, Zhang X, Qin J, He J (2020) A reformative teaching–learning-based optimization algorithm for solving numerical and engineering design optimization problems. Soft Comput 24(20):15889–15906CrossRef
Zurück zum Zitat Lu YC, Jan JC, Hung SL, Hung GH (2013) Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures. Eng Optim 45(10):1251–1271CrossRef Lu YC, Jan JC, Hung SL, Hung GH (2013) Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures. Eng Optim 45(10):1251–1271CrossRef
Zurück zum Zitat Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNetCrossRef Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNetCrossRef
Zurück zum Zitat Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef
Zurück zum Zitat Ozbasaran H, Yildirim ME (2020) Truss-sizing optimization attempts with CSA: a detailed evaluation. Soft Comput 24(22):16775–16801CrossRef Ozbasaran H, Yildirim ME (2020) Truss-sizing optimization attempts with CSA: a detailed evaluation. Soft Comput 24(22):16775–16801CrossRef
Zurück zum Zitat Pandey A, Datta R, Bhattacharya B (2017) Topology optimization of compliant structures and mechanisms using constructive solid geometry for 2-d and 3-d applications. Soft Comput 21(5):1157–1179MATHCrossRef Pandey A, Datta R, Bhattacharya B (2017) Topology optimization of compliant structures and mechanisms using constructive solid geometry for 2-d and 3-d applications. Soft Comput 21(5):1157–1179MATHCrossRef
Zurück zum Zitat Patel VK, Savsani VJ (2015) Heat transfer search (HTS): a novel optimization algorithm. Inf Sci 324:217–246CrossRef Patel VK, Savsani VJ (2015) Heat transfer search (HTS): a novel optimization algorithm. Inf Sci 324:217–246CrossRef
Zurück zum Zitat Pholdee N, Bureerat S (2014) Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints. Adv Eng Softw 75:1–13CrossRef Pholdee N, Bureerat S (2014) Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints. Adv Eng Softw 75:1–13CrossRef
Zurück zum Zitat Piotrowski AP (2013) Adaptive memetic differential evolution with global and local neighborhood-based mutation operators. Inf Sci 241:164–194CrossRef Piotrowski AP (2013) Adaptive memetic differential evolution with global and local neighborhood-based mutation operators. Inf Sci 241:164–194CrossRef
Zurück zum Zitat Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef
Zurück zum Zitat Savsani VJ, Tejani GG, Patel VK (2016) Truss topology optimization with static and dynamic constraints using modified subpopulation teaching-learning-based optimization. Eng Optim 48(11):1990–2006MathSciNetCrossRef Savsani VJ, Tejani GG, Patel VK (2016) Truss topology optimization with static and dynamic constraints using modified subpopulation teaching-learning-based optimization. Eng Optim 48(11):1990–2006MathSciNetCrossRef
Zurück zum Zitat Sonmez M (2011) Artifcial Bee Colony algorithm for optimization of truss structures. Appl Soft Comput 11(2):2406–2418CrossRef Sonmez M (2011) Artifcial Bee Colony algorithm for optimization of truss structures. Appl Soft Comput 11(2):2406–2418CrossRef
Zurück zum Zitat Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658–1665). IEEE. Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658–1665). IEEE.
Zurück zum Zitat Tao H, Li J, Chen Y, Stojanovic V, Yang H (2020) Robust point-to-point iterative learning control with trial-varying initial conditions. IET Control Theory Appl 14(19):3344–3350MathSciNetCrossRef Tao H, Li J, Chen Y, Stojanovic V, Yang H (2020) Robust point-to-point iterative learning control with trial-varying initial conditions. IET Control Theory Appl 14(19):3344–3350MathSciNetCrossRef
Zurück zum Zitat Tejani GG, Savsani VJ, Patel VK (2016) Modified sub-population teaching-learning-based optimization for design of truss structures with natural frequency constraints. Mech Based Des Struct Mach 44(4):495–513CrossRef Tejani GG, Savsani VJ, Patel VK (2016) Modified sub-population teaching-learning-based optimization for design of truss structures with natural frequency constraints. Mech Based Des Struct Mach 44(4):495–513CrossRef
Zurück zum Zitat Tejani G, Savsani V, Patel V (2017) Modified sub-population based heat transfer search algorithm for structural optimization. International Journal of Applied Metaheuristic Computing (IJAMC) 8(3):1–23CrossRef Tejani G, Savsani V, Patel V (2017) Modified sub-population based heat transfer search algorithm for structural optimization. International Journal of Applied Metaheuristic Computing (IJAMC) 8(3):1–23CrossRef
Zurück zum Zitat Tejani GG, Savsani VJ, Bureerat S, Patel VK (2018) Topology and size optimization of trusses with static and dynamic bounds by modified symbiotic organisms search. J Comput Civ Eng 32(2):04017085CrossRef Tejani GG, Savsani VJ, Bureerat S, Patel VK (2018) Topology and size optimization of trusses with static and dynamic bounds by modified symbiotic organisms search. J Comput Civ Eng 32(2):04017085CrossRef
Zurück zum Zitat Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2019) An improved heat transfer search algorithm for unconstrained optimization problems. Journal of Computational Design and Engineering 6(1):13–32CrossRef Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2019) An improved heat transfer search algorithm for unconstrained optimization problems. Journal of Computational Design and Engineering 6(1):13–32CrossRef
Zurück zum Zitat Tejani GG, Kumar S, Gandomi AH (2021) Multi-objective heat transfer search algorithm for truss optimization. Engineering with Computers 37(1):641–662CrossRef Tejani GG, Kumar S, Gandomi AH (2021) Multi-objective heat transfer search algorithm for truss optimization. Engineering with Computers 37(1):641–662CrossRef
Zurück zum Zitat Teng ZJ, Lv JL, Guo LW (2019) An improved hybrid grey wolf optimization algorithm. Soft Comput 23(15):6617–6631CrossRef Teng ZJ, Lv JL, Guo LW (2019) An improved hybrid grey wolf optimization algorithm. Soft Comput 23(15):6617–6631CrossRef
Zurück zum Zitat Torabi S, Safi-Esfahani F (2019) A hybrid algorithm based on chicken swarm and improved raven roosting optimization. Soft Comput 23(20):10129–10171CrossRef Torabi S, Safi-Esfahani F (2019) A hybrid algorithm based on chicken swarm and improved raven roosting optimization. Soft Comput 23(20):10129–10171CrossRef
Zurück zum Zitat Waghmare G (2013) Comments on “A note on teaching–learning-based optimization algorithm.” Inf Sci 229:159–169CrossRef Waghmare G (2013) Comments on “A note on teaching–learning-based optimization algorithm.” Inf Sci 229:159–169CrossRef
Zurück zum Zitat Wansasueb K, Bureerat S, Kumar S (2021) Ensemble of four metaheuristic using a weighted sum technique for aircraft wing design. Engineering and Applied Science Research 48(4):385–396 Wansasueb K, Bureerat S, Kumar S (2021) Ensemble of four metaheuristic using a weighted sum technique for aircraft wing design. Engineering and Applied Science Research 48(4):385–396
Zurück zum Zitat Wei T, Li X, Stojanovic V (2021) Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn 103(2):1733–1755CrossRef Wei T, Li X, Stojanovic V (2021) Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn 103(2):1733–1755CrossRef
Zurück zum Zitat Winyangkul S, Wansaseub K, Sleesongsom S, Panagant N, Kumar S, Bureerat S, Pholdee N (2021) Ground Structures-Based Topology Optimization of a Morphing Wing Using a Metaheuristic Algorithm. Metals 11(8):1311CrossRef Winyangkul S, Wansaseub K, Sleesongsom S, Panagant N, Kumar S, Bureerat S, Pholdee N (2021) Ground Structures-Based Topology Optimization of a Morphing Wing Using a Metaheuristic Algorithm. Metals 11(8):1311CrossRef
Zurück zum Zitat Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef
Zurück zum Zitat Xu B, Jiang J, Tong W, Wu K (2003) Topology group concept for truss topology optimization with frequency constraints. J Sound Vib 261(5):911–925CrossRef Xu B, Jiang J, Tong W, Wu K (2003) Topology group concept for truss topology optimization with frequency constraints. J Sound Vib 261(5):911–925CrossRef
Zurück zum Zitat Yi W, Zhou Y, Gao L, Li X, Mou J (2016) An improved adaptive differential evolution algorithm for continuous optimization. Expert Syst Appl 44:1–12CrossRef Yi W, Zhou Y, Gao L, Li X, Mou J (2016) An improved adaptive differential evolution algorithm for continuous optimization. Expert Syst Appl 44:1–12CrossRef
Zurück zum Zitat Zaeimi M, Ghoddosian A (2020) Color harmony algorithm: an art-inspired metaheuristic for mathematical function optimization. Soft Comput 24(16):12027–12066CrossRef Zaeimi M, Ghoddosian A (2020) Color harmony algorithm: an art-inspired metaheuristic for mathematical function optimization. Soft Comput 24(16):12027–12066CrossRef
Metadaten
Titel
Performance enhancement of meta-heuristics through random mutation and simulated annealing-based selection for concurrent topology and sizing optimization of truss structures
verfasst von
Sumit Kumar
Ghanshyam G. Tejani
Nantiwat Pholdee
Sujin Bureerat
Publikationsdatum
01.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 12/2022
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-022-06930-2

Weitere Artikel der Ausgabe 12/2022

Soft Computing 12/2022 Zur Ausgabe

Premium Partner