Skip to main content
Erschienen in: Neural Computing and Applications 1/2014

01.07.2014 | Original Article

Constructing Runge–Kutta methods with the use of artificial neural networks

verfasst von: Angelos A. Anastassi

Erschienen in: Neural Computing and Applications | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A methodology that can generate the optimal coefficients of a numerical method with the use of an artificial neural network is presented in this work. The network can be designed to produce a finite difference algorithm that solves a specific system of ordinary differential equations numerically. The case we are examining here concerns an explicit two-stage Runge–Kutta method for the numerical solution of the two-body problem. Following the implementation of the network, the latter is trained to obtain the optimal values for the coefficients of the Runge–Kutta method. The comparison of the new method to others that are well known in the literature proves its efficiency and demonstrates the capability of the network to provide efficient algorithms for specific problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251–257CrossRef Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251–257CrossRef
3.
Zurück zum Zitat Dissanayake MWMG, Phan-Thien N (1994) Neural-network-based approximations for solving partial differential equations. Commun Numer Methods Eng 10:195–201CrossRefMATH Dissanayake MWMG, Phan-Thien N (1994) Neural-network-based approximations for solving partial differential equations. Commun Numer Methods Eng 10:195–201CrossRefMATH
4.
Zurück zum Zitat Meade AJ Jr, Fernandez AA (1994) The numerical solution of linear ordinary differential equations by feedforward neural networks. Math Comput Model 19:1–25CrossRefMATHMathSciNet Meade AJ Jr, Fernandez AA (1994) The numerical solution of linear ordinary differential equations by feedforward neural networks. Math Comput Model 19:1–25CrossRefMATHMathSciNet
5.
Zurück zum Zitat Meade AJ Jr, Fernandez AA (1994) Solution of nonlinear ordinary differential equations by feedforward neural networks. Math Comput Model 20:19–44CrossRefMATHMathSciNet Meade AJ Jr, Fernandez AA (1994) Solution of nonlinear ordinary differential equations by feedforward neural networks. Math Comput Model 20:19–44CrossRefMATHMathSciNet
6.
Zurück zum Zitat Puffer F, Tetzlaff R, Wolf D (1995) Learning algorithm for cellular neural networks (CNN) solving nonlinear partial differential equations. In: Conference Proceedings of the international symposium on signals, systems and electronics, pp 501–504 Puffer F, Tetzlaff R, Wolf D (1995) Learning algorithm for cellular neural networks (CNN) solving nonlinear partial differential equations. In: Conference Proceedings of the international symposium on signals, systems and electronics, pp 501–504
7.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9:987–1000CrossRef Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9:987–1000CrossRef
8.
Zurück zum Zitat He S, Reif K, Unbehauen RS (2000) Multilayer neural networks for solving a class of partial differential equations. Neural Netw 13:385–396CrossRef He S, Reif K, Unbehauen RS (2000) Multilayer neural networks for solving a class of partial differential equations. Neural Netw 13:385–396CrossRef
9.
Zurück zum Zitat Jianyu L, Siwei L, Yingjian Q, Yaping H (2002) Numerical solution of differential equations by radial basis function neural networks. Proc Int Jt Conf Neural Netw 1:773–777 Jianyu L, Siwei L, Yingjian Q, Yaping H (2002) Numerical solution of differential equations by radial basis function neural networks. Proc Int Jt Conf Neural Netw 1:773–777
10.
Zurück zum Zitat Alexandridis A, Chondrodima E, Sarimveis H (2013) Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization. IEEE Trans Neural Netw Learn Syst 24:219–230CrossRef Alexandridis A, Chondrodima E, Sarimveis H (2013) Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization. IEEE Trans Neural Netw Learn Syst 24:219–230CrossRef
11.
Zurück zum Zitat Ramuhalli P, Udpa L, Udpa SS (2005) Finite-element neural networks for solving differential equations. IEEE Trans Neural Netw 16:1381–1392CrossRef Ramuhalli P, Udpa L, Udpa SS (2005) Finite-element neural networks for solving differential equations. IEEE Trans Neural Netw 16:1381–1392CrossRef
12.
Zurück zum Zitat Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural networks. Neurocomputing 72(10–12):2385–2391CrossRef Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural networks. Neurocomputing 72(10–12):2385–2391CrossRef
13.
Zurück zum Zitat Tsitouras C (2002) Neural Networks with multidimensional transfer functions. IEEE Trans Neural Netw 13:222–228CrossRef Tsitouras C (2002) Neural Networks with multidimensional transfer functions. IEEE Trans Neural Netw 13:222–228CrossRef
14.
Zurück zum Zitat Butcher JC (2003) Numerical methods for ordinary differential equations. Wiley, New YorkCrossRefMATH Butcher JC (2003) Numerical methods for ordinary differential equations. Wiley, New YorkCrossRefMATH
15.
Zurück zum Zitat Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall Englewood Cliffs, New JerseyMATH Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall Englewood Cliffs, New JerseyMATH
16.
Zurück zum Zitat Widrow B, Hoff ME (1960) Adaptive switching circuits. IRE WESCON Conv Rec 4:96–104 Widrow B, Hoff ME (1960) Adaptive switching circuits. IRE WESCON Conv Rec 4:96–104
17.
Zurück zum Zitat Yu CC, Liu BD (2002) A back-propagation algorithm with adaptive learning rate and momentum coefficient. Proc 2002 Int Jt Conf Neural Netw 2:1218–1223 Yu CC, Liu BD (2002) A back-propagation algorithm with adaptive learning rate and momentum coefficient. Proc 2002 Int Jt Conf Neural Netw 2:1218–1223
Metadaten
Titel
Constructing Runge–Kutta methods with the use of artificial neural networks
verfasst von
Angelos A. Anastassi
Publikationsdatum
01.07.2014
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 1/2014
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-013-1476-x

Weitere Artikel der Ausgabe 1/2014

Neural Computing and Applications 1/2014 Zur Ausgabe

Premium Partner