Skip to main content
Erschienen in: Neural Computing and Applications 12/2020

29.07.2019 | Original Article

Online learning based on adaptive learning rate for a class of recurrent fuzzy neural network

verfasst von: A. Aziz Khater, Ahmad M. El-Nagar, Mohammad El-Bardini, Nabila M. El-Rabaie

Erschienen in: Neural Computing and Applications | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a novel structure of a recurrent interval type-2 TSK fuzzy neural network (RIT2-TSK-FNN) controller based on a reinforcement learning scheme for improving the performance of nonlinear systems using a less number of rules. The parameters of the proposed RIT2-TSK-FNN controller are leaned online using the reinforcement actor–critic method. The controller performance is improved over the time as a result of the online learning algorithm. The controller learns from its own mistakes and faults through the reward and punishment signal from the external environment and seeks to reinforce the RIT2-TSK-FNN controller parameters to converge. In order to obtain less number of rules, the structure learning is performed and thus the RIT2-TSK-FNN rules are obtained online based on the type-2 fuzzy clustering. The online adaptation of the proposed RIT2-TSK-FNN controller parameters is developed using the Levenberg–Marquardt method with adaptive learning rates. The stability analysis is discussed using the Lyapunov theorem. The obtained results show that the proposed RIT2-TSK-FNN controller using the reinforcement actor–critic technique is more preferable than the RIT2-TSK-FNN controller without the actor–critic method under the same conditions. The proposed controller is applied to a nonlinear mathematical system and an industrial process such as a heat exchanger to clarify the robustness of the proposed structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat El-Nagar AM, El-Bardini M (2014) Practical realization for the interval type-2 fuzzy PD + I controller using a low-cost microcontroller. Arab J Sci Eng 39(8):6463–6476CrossRef El-Nagar AM, El-Bardini M (2014) Practical realization for the interval type-2 fuzzy PD + I controller using a low-cost microcontroller. Arab J Sci Eng 39(8):6463–6476CrossRef
2.
Zurück zum Zitat Shaheen O, El-Nagar AM, El-Bardini M, El-Rabaie NM (2018) Probabilistic fuzzy logic controller for uncertain nonlinear systems. J Frankl Inst 355(3):1088–1106MathSciNetMATHCrossRef Shaheen O, El-Nagar AM, El-Bardini M, El-Rabaie NM (2018) Probabilistic fuzzy logic controller for uncertain nonlinear systems. J Frankl Inst 355(3):1088–1106MathSciNetMATHCrossRef
3.
Zurück zum Zitat El-Nagar AM, El-Bardini M (2016) Hardware-in-the-loop simulation of interval type-2 fuzzy PD controller for uncertain nonlinear system using low cost microcontroller. Appl Math Model 40(3):2346–2355MATHCrossRef El-Nagar AM, El-Bardini M (2016) Hardware-in-the-loop simulation of interval type-2 fuzzy PD controller for uncertain nonlinear system using low cost microcontroller. Appl Math Model 40(3):2346–2355MATHCrossRef
4.
Zurück zum Zitat Sozhamadevi N, Sathiyamoorthy S (2015) A probabilistic fuzzy inference system for modeling and control of nonlinear process. Arab J Sci Eng 40(6):1777–1791CrossRef Sozhamadevi N, Sathiyamoorthy S (2015) A probabilistic fuzzy inference system for modeling and control of nonlinear process. Arab J Sci Eng 40(6):1777–1791CrossRef
5.
Zurück zum Zitat Chemachema M (2012) Output feedback direct adaptive neural network control for uncertain SISO nonlinear systems using a fuzzy estimator of the control error. Neural Netw 36:25–34MATHCrossRef Chemachema M (2012) Output feedback direct adaptive neural network control for uncertain SISO nonlinear systems using a fuzzy estimator of the control error. Neural Netw 36:25–34MATHCrossRef
6.
Zurück zum Zitat Rossomando FG, Soria CM (2017) Discrete-time sliding mode neuro-adaptive controller for SCARA robot arm. Neural Comput Appl 28(12):3837–3850CrossRef Rossomando FG, Soria CM (2017) Discrete-time sliding mode neuro-adaptive controller for SCARA robot arm. Neural Comput Appl 28(12):3837–3850CrossRef
7.
Zurück zum Zitat Wen G, Ge SS, Tu F (2018) Optimized backstepping for tracking control of strict-feedback systems. IEEE Trans Neural Netw Learn Syst 29(8):3850–3862MathSciNetCrossRef Wen G, Ge SS, Tu F (2018) Optimized backstepping for tracking control of strict-feedback systems. IEEE Trans Neural Netw Learn Syst 29(8):3850–3862MathSciNetCrossRef
8.
Zurück zum Zitat Aghababa MP (2016) Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft Comput 20(10):4055–4067CrossRef Aghababa MP (2016) Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft Comput 20(10):4055–4067CrossRef
9.
Zurück zum Zitat Kiumarsi B, Vamvoudakis KG, Modares H, Lewis FL (2018) Optimal and autonomous control using reinforcement learning: a survey. IEEE Trans Neural Netw Learn Syst 29(6):2042–2062MathSciNetCrossRef Kiumarsi B, Vamvoudakis KG, Modares H, Lewis FL (2018) Optimal and autonomous control using reinforcement learning: a survey. IEEE Trans Neural Netw Learn Syst 29(6):2042–2062MathSciNetCrossRef
10.
Zurück zum Zitat Liu YJ, Li S, Tong S, Chen CP (2018) Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE Trans Neural Netw Learn Syst 99:1–11 Liu YJ, Li S, Tong S, Chen CP (2018) Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE Trans Neural Netw Learn Syst 99:1–11
11.
Zurück zum Zitat Khan SG, Herrmann G, Lewis FL, Pipe T, Melhuish C (2012) Reinforcement learning and optimal adaptive control: an overview and implementation examples. Annu Rev Control 36(1):42–59CrossRef Khan SG, Herrmann G, Lewis FL, Pipe T, Melhuish C (2012) Reinforcement learning and optimal adaptive control: an overview and implementation examples. Annu Rev Control 36(1):42–59CrossRef
12.
Zurück zum Zitat Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dynamic programming. IEEE Trans Syst Man Cybern Part C (Appl Rev) 32(2):140–153CrossRef Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dynamic programming. IEEE Trans Syst Man Cybern Part C (Appl Rev) 32(2):140–153CrossRef
13.
Zurück zum Zitat Khater AA, El-Bardini M, El-Rabaie NM (2015) Embedded adaptive fuzzy controller based on reinforcement learning for dc motor with flexible shaft. Arab J Sci Eng 40(8):2389–2406MATHCrossRef Khater AA, El-Bardini M, El-Rabaie NM (2015) Embedded adaptive fuzzy controller based on reinforcement learning for dc motor with flexible shaft. Arab J Sci Eng 40(8):2389–2406MATHCrossRef
14.
Zurück zum Zitat Radac MB, Precup RE, Roman RC (2017) Model-free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning. J Syst Sci 48(5):1071–1083MathSciNetMATHCrossRef Radac MB, Precup RE, Roman RC (2017) Model-free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning. J Syst Sci 48(5):1071–1083MathSciNetMATHCrossRef
15.
Zurück zum Zitat Boubertakh H, Tadjine M, Glorennec PY, Labiod S (2010) Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Trans 49(4):543–551CrossRef Boubertakh H, Tadjine M, Glorennec PY, Labiod S (2010) Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Trans 49(4):543–551CrossRef
16.
Zurück zum Zitat Lewis FL, Liu D (2013) Reinforcement learning and approximate dynamic programming for feedback control. Wiley, Hoboken Lewis FL, Liu D (2013) Reinforcement learning and approximate dynamic programming for feedback control. Wiley, Hoboken
17.
Zurück zum Zitat Hendzel Z, Szuster M (2011) Discrete neural dynamic programming in wheeled mobile robot control. Commun Nonlinear Sci Numer Simul 16(5):2355–2362MathSciNetMATHCrossRef Hendzel Z, Szuster M (2011) Discrete neural dynamic programming in wheeled mobile robot control. Commun Nonlinear Sci Numer Simul 16(5):2355–2362MathSciNetMATHCrossRef
18.
Zurück zum Zitat Zhang J, Zhang H, Luo Y, Feng T (2014) Model-free optimal control design for a class of linear discrete-time systems with multiple delays using adaptive dynamic programming. Neurocomputing 135:163–170CrossRef Zhang J, Zhang H, Luo Y, Feng T (2014) Model-free optimal control design for a class of linear discrete-time systems with multiple delays using adaptive dynamic programming. Neurocomputing 135:163–170CrossRef
19.
Zurück zum Zitat Wang D, Liu D, Wei Q, Zhao D (2012) Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica 48(8):1825–1832MathSciNetMATHCrossRef Wang D, Liu D, Wei Q, Zhao D (2012) Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica 48(8):1825–1832MathSciNetMATHCrossRef
20.
Zurück zum Zitat Zhong X, He H, Zhang H, Wang Z (2015) A neural network based online learning and control approach for Markov jump systems. Neurocomputing 149:116–123CrossRef Zhong X, He H, Zhang H, Wang Z (2015) A neural network based online learning and control approach for Markov jump systems. Neurocomputing 149:116–123CrossRef
21.
Zurück zum Zitat Maharajan C, Raja R, Cao J, Rajchakit G (2018) Novel global robust exponential stability criterion for uncertain inertial-type BAM neural networks with discrete and distributed time-varying delays via Lagrange sense. J Frankl Inst 355(11):4727–4754MathSciNetMATHCrossRef Maharajan C, Raja R, Cao J, Rajchakit G (2018) Novel global robust exponential stability criterion for uncertain inertial-type BAM neural networks with discrete and distributed time-varying delays via Lagrange sense. J Frankl Inst 355(11):4727–4754MathSciNetMATHCrossRef
22.
Zurück zum Zitat Sowmiya C, Raja R, Cao J, Rajchakit G (2018) Enhanced result on stability analysis of randomly occurring uncertain parameters, leakage, and impulsive BAM neural networks with time-varying delays: discrete-time case. Int J Adapt Control Signal Process 32(7):1010–1039MathSciNetMATHCrossRef Sowmiya C, Raja R, Cao J, Rajchakit G (2018) Enhanced result on stability analysis of randomly occurring uncertain parameters, leakage, and impulsive BAM neural networks with time-varying delays: discrete-time case. Int J Adapt Control Signal Process 32(7):1010–1039MathSciNetMATHCrossRef
23.
Zurück zum Zitat Sowmiya C, Raj R, Cao J, Li X, Rajchakit G (2018) Discrete-time stochastic impulsive BAM neural networks with leakage and mixed time delays: an exponential stability problem. J Frankl Inst 355(10):4404–4435MathSciNetMATHCrossRef Sowmiya C, Raj R, Cao J, Li X, Rajchakit G (2018) Discrete-time stochastic impulsive BAM neural networks with leakage and mixed time delays: an exponential stability problem. J Frankl Inst 355(10):4404–4435MathSciNetMATHCrossRef
24.
Zurück zum Zitat Sowmiya C, Raja R, Cao J, Rajchakit G, Alsaedi A (2018) Exponential stability of discrete-time cellular uncertain BAM neural networks with variable delays using halanay-type inequality. Appl Math Inf Sci 12(3):545–558MathSciNetCrossRef Sowmiya C, Raja R, Cao J, Rajchakit G, Alsaedi A (2018) Exponential stability of discrete-time cellular uncertain BAM neural networks with variable delays using halanay-type inequality. Appl Math Inf Sci 12(3):545–558MathSciNetCrossRef
25.
Zurück zum Zitat Sundara V, Raja R, Agarwal R, Rajchakit G (2018) A novel controllability analysis of impulsive fractional linear time invariant systems with state delay and distributed delays in control. Discontin Nonlinearity Complex 7(3):275–290MATHCrossRef Sundara V, Raja R, Agarwal R, Rajchakit G (2018) A novel controllability analysis of impulsive fractional linear time invariant systems with state delay and distributed delays in control. Discontin Nonlinearity Complex 7(3):275–290MATHCrossRef
26.
Zurück zum Zitat Saravanakumar R, Rajchakit G, Ahn CK, Karimi HR (2017) Exponential stability, passivity, and dissipativity analysis of generalized neural networks with mixed time-varying delays. IEEE Trans Syst Man Cybern Syst 49(2):395–405CrossRef Saravanakumar R, Rajchakit G, Ahn CK, Karimi HR (2017) Exponential stability, passivity, and dissipativity analysis of generalized neural networks with mixed time-varying delays. IEEE Trans Syst Man Cybern Syst 49(2):395–405CrossRef
27.
Zurück zum Zitat Song R, Xiao W, Zhang H, Sun C (2014) Adaptive dynamic programming for a class of complex-valued nonlinear systems. IEEE Trans Neural Netw Learn Syst 25(9):1733–1739CrossRef Song R, Xiao W, Zhang H, Sun C (2014) Adaptive dynamic programming for a class of complex-valued nonlinear systems. IEEE Trans Neural Netw Learn Syst 25(9):1733–1739CrossRef
28.
Zurück zum Zitat Si J, Wang YT (2001) Online learning control by association and reinforcement. IEEE Trans Neural Netw 12(2):264–276CrossRef Si J, Wang YT (2001) Online learning control by association and reinforcement. IEEE Trans Neural Netw 12(2):264–276CrossRef
29.
Zurück zum Zitat Huang X, Naghdy F, Du H, Naghdy G, Todd C (2015) Reinforcement learning neural network (RLNN) based adaptive control of fine hand motion rehabilitation robot. In: IEEE conference on control applications (CCA), pp 941–946 Huang X, Naghdy F, Du H, Naghdy G, Todd C (2015) Reinforcement learning neural network (RLNN) based adaptive control of fine hand motion rehabilitation robot. In: IEEE conference on control applications (CCA), pp 941–946
30.
Zurück zum Zitat Shen H, Guo C (2016) Path-following control of underactuated ships using actor-critic reinforcement learning with MLP neural networks. In: IEEE conference information science and technology (ICIST), pp 317–321 Shen H, Guo C (2016) Path-following control of underactuated ships using actor-critic reinforcement learning with MLP neural networks. In: IEEE conference information science and technology (ICIST), pp 317–321
31.
Zurück zum Zitat Niedzwiedz C, Elhanany I, Liu Z, Livingston S (2008) A consolidated actor-critic model with function approximation for high-dimensional POMDPs. In: AAAI conference, pp 37–42 Niedzwiedz C, Elhanany I, Liu Z, Livingston S (2008) A consolidated actor-critic model with function approximation for high-dimensional POMDPs. In: AAAI conference, pp 37–42
32.
Zurück zum Zitat He H, Ni Z, Fu J (2012) A three-network architecture for on-line learning and optimization based on adaptive dynamic programming. Neurocomputing 78(1):3–13CrossRef He H, Ni Z, Fu J (2012) A three-network architecture for on-line learning and optimization based on adaptive dynamic programming. Neurocomputing 78(1):3–13CrossRef
33.
Zurück zum Zitat Ni Z, Tang Y, Sui X, He H, Wen J (2016) An adaptive neuro-control approach for multimachine power systems. Int J Electr Power Energy Syst 75:108–116CrossRef Ni Z, Tang Y, Sui X, He H, Wen J (2016) An adaptive neuro-control approach for multimachine power systems. Int J Electr Power Energy Syst 75:108–116CrossRef
34.
Zurück zum Zitat Lv Y, Na J, Ren X (2017) Online H∞ control for completely unknown nonlinear systems via an identifier–critic-based ADP structure. Int J Control 92:1–12MathSciNetMATH Lv Y, Na J, Ren X (2017) Online H∞ control for completely unknown nonlinear systems via an identifier–critic-based ADP structure. Int J Control 92:1–12MathSciNetMATH
35.
Zurück zum Zitat Khater AA, El-Nagar AM, El-Bardini M, El-Rabaie NM (2018) Adaptive TS fuzzy controller using reinforcement learning based on Lyapunov stability. J Frankl Inst 355(14):6390–6415MathSciNetMATHCrossRef Khater AA, El-Nagar AM, El-Bardini M, El-Rabaie NM (2018) Adaptive TS fuzzy controller using reinforcement learning based on Lyapunov stability. J Frankl Inst 355(14):6390–6415MathSciNetMATHCrossRef
36.
Zurück zum Zitat Fung RF, Lin FJ, Wai RJ, Lu PY (2000) Fuzzy neural network control of a motor-quick-return servomechanism. Mechatronics 10:145–167CrossRef Fung RF, Lin FJ, Wai RJ, Lu PY (2000) Fuzzy neural network control of a motor-quick-return servomechanism. Mechatronics 10:145–167CrossRef
37.
Zurück zum Zitat Juang CF, Huang RB, Lin YY (2009) A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing. IEEE Trans Fuzzy Syst 17(5):1092–1105CrossRef Juang CF, Huang RB, Lin YY (2009) A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing. IEEE Trans Fuzzy Syst 17(5):1092–1105CrossRef
38.
Zurück zum Zitat Lin CJ, Chin CC (2004) Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans Syst Man Cybern Part B (Cybern) 34(5):2144–2154CrossRef Lin CJ, Chin CC (2004) Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans Syst Man Cybern Part B (Cybern) 34(5):2144–2154CrossRef
39.
Zurück zum Zitat El-Nagar AM, El-Bardini M (2014) Simplified interval type-2 fuzzy logic system based on new type-reduction. J Intell Fuzzy Syst 27(4):1999–2010MathSciNetMATHCrossRef El-Nagar AM, El-Bardini M (2014) Simplified interval type-2 fuzzy logic system based on new type-reduction. J Intell Fuzzy Syst 27(4):1999–2010MathSciNetMATHCrossRef
40.
Zurück zum Zitat El-Nagar AM (2016) Embedded intelligent adaptive PI controller for an electromechanical system. ISA Trans 64:314–327CrossRef El-Nagar AM (2016) Embedded intelligent adaptive PI controller for an electromechanical system. ISA Trans 64:314–327CrossRef
41.
Zurück zum Zitat Deng Z, Choi KS, Cao L, Wang S (2014) T2FELA: type-2 fuzzy extreme learning algorithm for fast training of interval type-2 TSK fuzzy logic system”. IEEE Trans Neural Netw Learn Syst 25(4):664–676CrossRef Deng Z, Choi KS, Cao L, Wang S (2014) T2FELA: type-2 fuzzy extreme learning algorithm for fast training of interval type-2 TSK fuzzy logic system”. IEEE Trans Neural Netw Learn Syst 25(4):664–676CrossRef
42.
Zurück zum Zitat Zhang Z (2018) Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput Appl 29(4):1039–1054CrossRef Zhang Z (2018) Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput Appl 29(4):1039–1054CrossRef
44.
Zurück zum Zitat El-Bardini M, El-Nagar AM (2014) Interval type-2 fuzzy PID controller: analytical structures and stability analysis. Arab J Sci Eng 39(10):7443–7458MATHCrossRef El-Bardini M, El-Nagar AM (2014) Interval type-2 fuzzy PID controller: analytical structures and stability analysis. Arab J Sci Eng 39(10):7443–7458MATHCrossRef
45.
Zurück zum Zitat El-Bardini M, El-Nagar AM (2014) Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. ISA Trans 53(3):732–743CrossRef El-Bardini M, El-Nagar AM (2014) Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. ISA Trans 53(3):732–743CrossRef
46.
Zurück zum Zitat Juang CF, Tsao YW (2008) A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans Fuzzy Syst 16(6):1411–1424CrossRef Juang CF, Tsao YW (2008) A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans Fuzzy Syst 16(6):1411–1424CrossRef
47.
Zurück zum Zitat Lin YY, Chang JY, Lin CT (2014) A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications. IEEE Trans Ind Electron 61(1):447–459CrossRef Lin YY, Chang JY, Lin CT (2014) A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications. IEEE Trans Ind Electron 61(1):447–459CrossRef
48.
Zurück zum Zitat El-Nagar AM (2018) Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network—A novel structure. ISA Trans 72:205–217CrossRef El-Nagar AM (2018) Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network—A novel structure. ISA Trans 72:205–217CrossRef
49.
Zurück zum Zitat Lin YY, Liao SH, Chang JY, Lin CT (2014) Simplified interval type-2 fuzzy neural networks. IEEE Trans Neural Netw Learn Syst 25(5):959–969CrossRef Lin YY, Liao SH, Chang JY, Lin CT (2014) Simplified interval type-2 fuzzy neural networks. IEEE Trans Neural Netw Learn Syst 25(5):959–969CrossRef
50.
Zurück zum Zitat Wiering M, Van Otterlo M (2012) Reinforcement learning. Adapt Learn Optim 12:3CrossRef Wiering M, Van Otterlo M (2012) Reinforcement learning. Adapt Learn Optim 12:3CrossRef
51.
Zurück zum Zitat Juang CF, Lin CT (1998) An online self-constructing neural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 6(1):12–32CrossRef Juang CF, Lin CT (1998) An online self-constructing neural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 6(1):12–32CrossRef
52.
Zurück zum Zitat Kermani BG, Schiffman SS, Nagle HT (2005) Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors Actuators B Chem 110(1):13–22CrossRef Kermani BG, Schiffman SS, Nagle HT (2005) Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors Actuators B Chem 110(1):13–22CrossRef
53.
Zurück zum Zitat Fu X, Li S, Fairbank M, Wunsch DC, Alonso E (2015) Training recurrent neural networks with the Levenberg–Marquardt algorithm for optimal control of a grid-connected converter. IEEE Trans Neural Netw Learn Syst 26(9):1900–1912MathSciNetCrossRef Fu X, Li S, Fairbank M, Wunsch DC, Alonso E (2015) Training recurrent neural networks with the Levenberg–Marquardt algorithm for optimal control of a grid-connected converter. IEEE Trans Neural Netw Learn Syst 26(9):1900–1912MathSciNetCrossRef
54.
Zurück zum Zitat Liu H (2010) On the Levenberg–Marquardt training method for feed-forward neural networks. In: IEEE international conference on natural computation (ICNC), vol 1. pp 456–460 Liu H (2010) On the Levenberg–Marquardt training method for feed-forward neural networks. In: IEEE international conference on natural computation (ICNC), vol 1. pp 456–460
55.
Zurück zum Zitat Astrom KJ, Wittenmark B (2013) Adaptive control. Courier Corporation Astrom KJ, Wittenmark B (2013) Adaptive control. Courier Corporation
56.
Zurück zum Zitat Zhang X, Zhang H, Sun Q, Luo Y (2012) Adaptive dynamic programming-based optimal control of unknown nonaffine nonlinear discrete-time systems with proof of convergence. Neurocomputing 91:48–55CrossRef Zhang X, Zhang H, Sun Q, Luo Y (2012) Adaptive dynamic programming-based optimal control of unknown nonaffine nonlinear discrete-time systems with proof of convergence. Neurocomputing 91:48–55CrossRef
57.
Zurück zum Zitat Xu D, Jiang B, Shi P (2014) Adaptive observer based data-driven control for nonlinear discrete-time processes. IEEE Trans Autom Sci Eng 11(4):1037–1045 Xu D, Jiang B, Shi P (2014) Adaptive observer based data-driven control for nonlinear discrete-time processes. IEEE Trans Autom Sci Eng 11(4):1037–1045
58.
Zurück zum Zitat Eskinat E, Johnson SH, Luyben WL (1991) Use of Hammerstein models in identification of nonlinear systems. AIChE J 37(2):255–268CrossRef Eskinat E, Johnson SH, Luyben WL (1991) Use of Hammerstein models in identification of nonlinear systems. AIChE J 37(2):255–268CrossRef
59.
Zurück zum Zitat Berger MA, da Fonseca Neto JV (2013) Neurodynamic programming approach for the PID controller adaptation. IFAC Proc 46(11):534–539CrossRef Berger MA, da Fonseca Neto JV (2013) Neurodynamic programming approach for the PID controller adaptation. IFAC Proc 46(11):534–539CrossRef
Metadaten
Titel
Online learning based on adaptive learning rate for a class of recurrent fuzzy neural network
verfasst von
A. Aziz Khater
Ahmad M. El-Nagar
Mohammad El-Bardini
Nabila M. El-Rabaie
Publikationsdatum
29.07.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 12/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04372-w

Weitere Artikel der Ausgabe 12/2020

Neural Computing and Applications 12/2020 Zur Ausgabe

Hybrid Artificial Intelligence and Machine Learning Technologies

A distant supervision method based on paradigmatic relations for learning word embeddings

S.I. : Hybrid Artificial Intelligence and Machine Learning Technologies

Deep learning-based sign language recognition system for static signs

Premium Partner