Skip to main content
Erschienen in: Neural Computing and Applications 17/2023

16.03.2021 | S.I. : New Trends of Neural Computing for Advanced Applications

Adaptive neural network control for maglev vehicle systems with time-varying mass and external disturbance

verfasst von: Yougang Sun, Junqi Xu, Guobin Lin, Ning Sun

Erschienen in: Neural Computing and Applications | Ausgabe 17/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unexpected disturbance and ever-changing passengers are unfavorable factors that always accompany maglev trains. If not considered or handled properly, they would deteriorate the control system performance significantly and even cause instability. This paper proposes a neural network-based adaptive control approach to stabilize the airgap of the nonlinear maglev vehicle. Meanwhile, the time-varying mass and external disturbance can be estimated accurately. Specifically, to ensure the asymptotic stability of the maglev system, a nonlinear basic control law is developed first. To tackle the uncertainty, a radial basis function neural network is fused into the basic controller, which can recover the unknown mass and disturbance more quickly and accurately. Lyapunov stability techniques are utilized to prove the stability of the whole maglev control system without any linear approximation. The sufficient comparative simulation results are provided to demonstrate that the established control scheme can obtain better levitation performance and achieve a precise estimation of time-varying and disturbance simultaneously. Finally, we build a dSPACE-based single electromagnet suspension test bed to examine its efficacy and practical applicability as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boldea I, Tutelea L, Xu W et al (2017) Linear electric machines, drives, and MAGLEVS: an overview. IEEE Trans Ind Electron 65(9):7504–7515CrossRef Boldea I, Tutelea L, Xu W et al (2017) Linear electric machines, drives, and MAGLEVS: an overview. IEEE Trans Ind Electron 65(9):7504–7515CrossRef
2.
Zurück zum Zitat Lee HW, Kim KC, Lee J (2006) Review of maglev train technologies. IEEE Trans Magn 42(7):1917–1925CrossRef Lee HW, Kim KC, Lee J (2006) Review of maglev train technologies. IEEE Trans Magn 42(7):1917–1925CrossRef
3.
Zurück zum Zitat Soejima H (2000) Maglev: the 21st century railway. Int Railw J Rapid Trans Rev 40(1) Soejima H (2000) Maglev: the 21st century railway. Int Railw J Rapid Trans Rev 40(1)
4.
Zurück zum Zitat Thornton RD (2009) Efficient and affordable maglev opportunities in the United States P. IEEE 97(11):1901–1921CrossRef Thornton RD (2009) Efficient and affordable maglev opportunities in the United States P. IEEE 97(11):1901–1921CrossRef
5.
Zurück zum Zitat Na J, Huang Y, Wu X et al (2017) Active adaptive estimation and control for vehicle suspensions with prescribed performance. IEEE Trans Control Syst Technol 26(6):2063–2077CrossRef Na J, Huang Y, Wu X et al (2017) Active adaptive estimation and control for vehicle suspensions with prescribed performance. IEEE Trans Control Syst Technol 26(6):2063–2077CrossRef
6.
Zurück zum Zitat Pan H, Sun W, Jing X, Gao H, Yao J (2017) Adaptive tracking control for active suspension systems with non-ideal actuators. J Sound Vib 399:2–20CrossRef Pan H, Sun W, Jing X, Gao H, Yao J (2017) Adaptive tracking control for active suspension systems with non-ideal actuators. J Sound Vib 399:2–20CrossRef
7.
Zurück zum Zitat Jiang M-M, Xie X-J, Zhang K (2019) Finite-time stabilization of stochastic high-order nonlinear systems with FT-SISS inverse dynamics. IEEE Trans Autom Control 64(1):313–320MathSciNetCrossRefMATH Jiang M-M, Xie X-J, Zhang K (2019) Finite-time stabilization of stochastic high-order nonlinear systems with FT-SISS inverse dynamics. IEEE Trans Autom Control 64(1):313–320MathSciNetCrossRefMATH
8.
Zurück zum Zitat Xie X-J, Jiang M (2019) Dynamic state feedback stabilization of stochastic cascade nonlinear time-delay systems with SISS inverse dynamics. IEEE Trans Autom Control 64(12):5132–5139MathSciNetCrossRefMATH Xie X-J, Jiang M (2019) Dynamic state feedback stabilization of stochastic cascade nonlinear time-delay systems with SISS inverse dynamics. IEEE Trans Autom Control 64(12):5132–5139MathSciNetCrossRefMATH
9.
Zurück zum Zitat Li TS, Zhao R, Chen CLP, Fang LY, Liu C (2018) Finite time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans Cybern 48(11):3243–3253CrossRef Li TS, Zhao R, Chen CLP, Fang LY, Liu C (2018) Finite time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans Cybern 48(11):3243–3253CrossRef
10.
Zurück zum Zitat Su C, Stepanenko Y (1995) Adaptive sliding mode coordinated control of multiple robot arms attached to a constrained object. IEEE Trasn Syst Man Cybern 25(5):871–878CrossRef Su C, Stepanenko Y (1995) Adaptive sliding mode coordinated control of multiple robot arms attached to a constrained object. IEEE Trasn Syst Man Cybern 25(5):871–878CrossRef
11.
Zurück zum Zitat Sun Y, Qiang H, Xu J et al (2020) Internet of things-based online condition monitor and improved adaptive fuzzy control for a medium-low-speed maglev train system. IEEE Trans Ind Inform 16(4):2629–2639CrossRef Sun Y, Qiang H, Xu J et al (2020) Internet of things-based online condition monitor and improved adaptive fuzzy control for a medium-low-speed maglev train system. IEEE Trans Ind Inform 16(4):2629–2639CrossRef
12.
Zurück zum Zitat Yang T, Sun N, Chen H et al (2020) Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans Neural Netw Learn 31(3):901–914MathSciNetCrossRef Yang T, Sun N, Chen H et al (2020) Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans Neural Netw Learn 31(3):901–914MathSciNetCrossRef
13.
Zurück zum Zitat Shen G, Gang X, Wang H et al (2015) Analysis and experimental study on the MAGLEV vehicle-guideway interaction based on the full-state feedback theory. J Vib Control 21(2):408–416CrossRef Shen G, Gang X, Wang H et al (2015) Analysis and experimental study on the MAGLEV vehicle-guideway interaction based on the full-state feedback theory. J Vib Control 21(2):408–416CrossRef
14.
Zurück zum Zitat Yau JD (2009) Vibration control of maglev vehicles traveling over a flexible guideway. J Sound Vib 321(1):184–200CrossRef Yau JD (2009) Vibration control of maglev vehicles traveling over a flexible guideway. J Sound Vib 321(1):184–200CrossRef
15.
Zurück zum Zitat MacLeod C, Goodall RM (1996) Frequency shaping LQ control of maglev suspension systems for optimal performance with deterministic and stochastic inputs. IEE P-Control Theor Appl 143(1):25–30CrossRefMATH MacLeod C, Goodall RM (1996) Frequency shaping LQ control of maglev suspension systems for optimal performance with deterministic and stochastic inputs. IEE P-Control Theor Appl 143(1):25–30CrossRefMATH
16.
Zurück zum Zitat Sun Y, Xu J, Qiang H, Wang W, Lin G (2019) Hopf bifurcation analysis of maglev vehicle–guideway interaction vibration system and stability control based on fuzzy adaptive theory. Comput Ind 108:197–209CrossRef Sun Y, Xu J, Qiang H, Wang W, Lin G (2019) Hopf bifurcation analysis of maglev vehicle–guideway interaction vibration system and stability control based on fuzzy adaptive theory. Comput Ind 108:197–209CrossRef
17.
Zurück zum Zitat He G, Li J, Cui P (2016) Nonlinear control scheme for the levitation module of maglev train. J Dyn Syst-T ASME 138(7):1–8CrossRef He G, Li J, Cui P (2016) Nonlinear control scheme for the levitation module of maglev train. J Dyn Syst-T ASME 138(7):1–8CrossRef
18.
Zurück zum Zitat Sinha PK, Pechev AN (1999) Model reference adaptive control of a maglev system with stable maximum descent criterion. Automatica 35(8):1457–1465MathSciNetCrossRefMATH Sinha PK, Pechev AN (1999) Model reference adaptive control of a maglev system with stable maximum descent criterion. Automatica 35(8):1457–1465MathSciNetCrossRefMATH
19.
Zurück zum Zitat Wai RJ, Chen MW, Yao JX (2016) Observer-based adaptive fuzzy-neural-network control for hybrid maglev transportation system. Neurocomputing 175:10–24CrossRef Wai RJ, Chen MW, Yao JX (2016) Observer-based adaptive fuzzy-neural-network control for hybrid maglev transportation system. Neurocomputing 175:10–24CrossRef
20.
Zurück zum Zitat Morales R, Feliu V, Sira-Ramirez H (2011) Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain. IEEE Trans Control Syst Technol 19(4):757–771CrossRefMATH Morales R, Feliu V, Sira-Ramirez H (2011) Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain. IEEE Trans Control Syst Technol 19(4):757–771CrossRefMATH
21.
Zurück zum Zitat Sun Y, Qiang H, Mei X et al (2018) Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems. Neural Comput Appl 30(6):2003–2012CrossRef Sun Y, Qiang H, Mei X et al (2018) Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems. Neural Comput Appl 30(6):2003–2012CrossRef
22.
Zurück zum Zitat Li J, Li J, Zhou D et al (2015) The active control of maglev stationary self-excited vibration with a virtual energy harvester. IEEE Trans Ind Electron 62(5):2942–2951CrossRef Li J, Li J, Zhou D et al (2015) The active control of maglev stationary self-excited vibration with a virtual energy harvester. IEEE Trans Ind Electron 62(5):2942–2951CrossRef
23.
Zurück zum Zitat Sun N, Fang Y, Chen H (2017) Tracking control for magnetic-suspension systems with online unknown mass identification. Control Eng Pract 58:242–253CrossRef Sun N, Fang Y, Chen H (2017) Tracking control for magnetic-suspension systems with online unknown mass identification. Control Eng Pract 58:242–253CrossRef
24.
Zurück zum Zitat Xu J, Du Y, Chen YH et al (2018) Adaptive robust constrained state control for non-linear maglev vehicle with guaranteed bounded airgap. IET Control Theory A 12(11):1573–1583MathSciNetCrossRef Xu J, Du Y, Chen YH et al (2018) Adaptive robust constrained state control for non-linear maglev vehicle with guaranteed bounded airgap. IET Control Theory A 12(11):1573–1583MathSciNetCrossRef
25.
Zurück zum Zitat Songqi L, Kunlun Z, Guoqing L, Wei G (2015) EMS maglev vehicles model reference adaptive control. In: 2015 34th Chinese control conference (CCC), Hangzhou, pp 2989–2993 Songqi L, Kunlun Z, Guoqing L, Wei G (2015) EMS maglev vehicles model reference adaptive control. In: 2015 34th Chinese control conference (CCC), Hangzhou, pp 2989–2993
26.
Zurück zum Zitat Sun Y, Li W, Xu J et al (2017) Nonlinear dynamic modeling and fuzzy sliding-mode controlling of electromagnetic levitation system of low speed maglev train. J Vibroeng 19(1):328–342CrossRef Sun Y, Li W, Xu J et al (2017) Nonlinear dynamic modeling and fuzzy sliding-mode controlling of electromagnetic levitation system of low speed maglev train. J Vibroeng 19(1):328–342CrossRef
27.
Zurück zum Zitat Qiang H, Li W, Sun Y, Liu X (2017) Levitation chassis dynamic analysis and robust position control for maglev vehicles under nonlinear periodic disturbance. J Vibroeng 19(2):1273–1286CrossRef Qiang H, Li W, Sun Y, Liu X (2017) Levitation chassis dynamic analysis and robust position control for maglev vehicles under nonlinear periodic disturbance. J Vibroeng 19(2):1273–1286CrossRef
Metadaten
Titel
Adaptive neural network control for maglev vehicle systems with time-varying mass and external disturbance
verfasst von
Yougang Sun
Junqi Xu
Guobin Lin
Ning Sun
Publikationsdatum
16.03.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 17/2023
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05874-2

Weitere Artikel der Ausgabe 17/2023

Neural Computing and Applications 17/2023 Zur Ausgabe

Premium Partner