Skip to main content
Erschienen in: Neural Computing and Applications 22/2021

09.07.2021 | Original Article

A novel classification framework using multiple bandwidth method with optimized CNN for brain–computer interfaces with EEG-fNIRS signals

verfasst von: Majid Nour, Şaban Öztürk, Kemal Polat

Erschienen in: Neural Computing and Applications | Ausgabe 22/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The most effective way to communicate between the brain and electronic devices in the outside world is the brain–computer interface (BCI) systems. BCI systems use signals of being through neural activity in the brain to fulfill this function. Traditional BCI systems use electroencephalography (E.E.G.) signals due to their characteristics, such as temporal resolution, cost, and noninvasive nature. However, the inherent complex features make the analysis process very difficult. In addition, its sensitivity to internal and external noise affects performance negatively. Near-infrared spectroscopy (NIRS), which describes brain hemodynamics, is a noninvasive method and robust against the problems that E.E.G. suffers. We present an effective study examining the effects of E.E.G. and NIRS signals for BCI and investigating the contribution of their combination to performance. Also, a novel classification framework using multiple bandwidth method with optimized convolution neural network (CNN) is proposed. The proposed method classifies the recorded E.E.G. and NIRS signals according to the imagination of opening and closing the subjects' right and left hands. A CNN architecture including fully connected layer optimization using E.E.G. and NIRS signals is trained in an end-to-end manner. Instead of using a single bandwidth as in the literature, multiple bandwidths are used in the training process. In this way, information loss in band filtering tasks is prevented. Performance indicators obtained from experiments performed using the proposed framework are superior to current state-of-the-art methods in the literature in the most significant performance metrics: accuracy and stability. The proposed approach has a higher classification performance than current state-of-the-art methods, with an accuracy performance of 99.85%. On the other hand, in order to test the performance of the proposed CNN method, a detailed ablation study section on single-band experiments and including analysis of each component is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khare SK, Bajaj V (2020) A facile and flexible motor imagery classification using electroencephalogram signals, Computer Methods and Programs in Biomedicine, 197 Khare SK, Bajaj V (2020) A facile and flexible motor imagery classification using electroencephalogram signals, Computer Methods and Programs in Biomedicine, 197
2.
Zurück zum Zitat Kai Keng A, Zhang Yang C, Haihong Z, Cuntai G (2008) Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397. Kai Keng A, Zhang Yang C, Haihong Z, Cuntai G (2008) Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397.
3.
Zurück zum Zitat Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24:128–139CrossRef Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24:128–139CrossRef
4.
Zurück zum Zitat Wang H, Dong X, Chen Z, Shi BE (2015) Hybrid gaze/E.E.G. brain computer interface for robot arm control on a pick and place task, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1476–1479 Wang H, Dong X, Chen Z, Shi BE (2015) Hybrid gaze/E.E.G. brain computer interface for robot arm control on a pick and place task, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1476–1479
5.
Zurück zum Zitat Paszkiel S (2020) Using BCI Technology for Controlling a Mobile Vehicle, Analysis and Classification of E.E.G. Signals for Brain–Computer Interfaces, pp. 71–77. Paszkiel S (2020) Using BCI Technology for Controlling a Mobile Vehicle, Analysis and Classification of E.E.G. Signals for Brain–Computer Interfaces, pp. 71–77.
7.
Zurück zum Zitat Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38:5391–5420CrossRef Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38:5391–5420CrossRef
8.
Zurück zum Zitat Sawangjai P, Hompoonsup S, Leelaarporn P, Kongwudhikunakorn S, Wilaiprasitporn T (2020) Consumer Grade E.E.G. Measuring Sensors as Research Tools: A Review, IEEE Sensors Journal, 20: 3996–4024. Sawangjai P, Hompoonsup S, Leelaarporn P, Kongwudhikunakorn S, Wilaiprasitporn T (2020) Consumer Grade E.E.G. Measuring Sensors as Research Tools: A Review, IEEE Sensors Journal, 20: 3996–4024.
10.
Zurück zum Zitat Ghonchi H, Fateh M, Abolghasemi V, Ferdowsi S, Rezvani M (2020) Deep recurrent–convolutional neural network for classification of simultaneous E.E.G. fNIRS signals. TET Signal Process 14:142–153 Ghonchi H, Fateh M, Abolghasemi V, Ferdowsi S, Rezvani M (2020) Deep recurrent–convolutional neural network for classification of simultaneous E.E.G. fNIRS signals. TET Signal Process 14:142–153
11.
Zurück zum Zitat Kwon OY, Lee M-H, Guan C, Lee S-W (2020) Subject-independent brain-computer interfaces based on deep convolutional neural networks. IEEE Trans Neural Netw Learn Syst 31:3839–3852CrossRef Kwon OY, Lee M-H, Guan C, Lee S-W (2020) Subject-independent brain-computer interfaces based on deep convolutional neural networks. IEEE Trans Neural Netw Learn Syst 31:3839–3852CrossRef
12.
Zurück zum Zitat Yongwook C, Jaeseung J, Sungho J (2012) Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI. IEEE Trans Rob 28:1131–1144CrossRef Yongwook C, Jaeseung J, Sungho J (2012) Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI. IEEE Trans Rob 28:1131–1144CrossRef
13.
Zurück zum Zitat Li Y, Li X, Ratcliffe M, Liu L, Qi Y, Liu Q (2011) A real-time EEG-based BCI system for attention recognition in ubiquitous environment, Proceedings of 2011 international workshop on Ubiquitous affective awareness and intelligent interaction - UAAII '11 Li Y, Li X, Ratcliffe M, Liu L, Qi Y, Liu Q (2011) A real-time EEG-based BCI system for attention recognition in ubiquitous environment, Proceedings of 2011 international workshop on Ubiquitous affective awareness and intelligent interaction - UAAII '11
14.
Zurück zum Zitat Alazrai R, Alwanni H, Daoud MI (2019) EEG-based BCI system for decoding finger movements within the same hand. Neurosci Lett 698:113–120CrossRef Alazrai R, Alwanni H, Daoud MI (2019) EEG-based BCI system for decoding finger movements within the same hand. Neurosci Lett 698:113–120CrossRef
15.
Zurück zum Zitat Mondini V, Mangia AL, Cappello A (2016) EEG-based BCI system using adaptive features extraction and classification procedures. Comput Intell Neurosci 2016:1–14CrossRef Mondini V, Mangia AL, Cappello A (2016) EEG-based BCI system using adaptive features extraction and classification procedures. Comput Intell Neurosci 2016:1–14CrossRef
16.
Zurück zum Zitat Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58:1865–1873CrossRef Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58:1865–1873CrossRef
17.
Zurück zum Zitat Gaur P, Pachori RB, Wang H, Prasad G (2018) A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst Appl 95:201–211CrossRef Gaur P, Pachori RB, Wang H, Prasad G (2018) A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst Appl 95:201–211CrossRef
18.
Zurück zum Zitat Paszkiel S (2020) Using neural networks for classification of the changes in the E.E.G. signal based on facial expressions. In: Paszkiel S (ed) Analysis and classification of E.E.G. signals for brain-computer interfaces. Springer International Publishing, pp 41–69CrossRef Paszkiel S (2020) Using neural networks for classification of the changes in the E.E.G. signal based on facial expressions. In: Paszkiel S (ed) Analysis and classification of E.E.G. signals for brain-computer interfaces. Springer International Publishing, pp 41–69CrossRef
19.
Zurück zum Zitat Jiahui P, Yuanqing L, Jun W (2016) An EEG-based brain-computer interface for emotion recognition. Int Joint Conf Neural Netw (IJCNN) 2016:2063–2067 Jiahui P, Yuanqing L, Jun W (2016) An EEG-based brain-computer interface for emotion recognition. Int Joint Conf Neural Netw (IJCNN) 2016:2063–2067
20.
Zurück zum Zitat Tan C, Sun F, Zhang W (2018) Deep Transfer Learning for EEG-Based Brain Computer Interface, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 916–920. Tan C, Sun F, Zhang W (2018) Deep Transfer Learning for EEG-Based Brain Computer Interface, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 916–920.
22.
Zurück zum Zitat Borgheai SB, McLinden J, Zisk AH, Hosni SI, Deligani RJ, Abtahi M, Mankodiya K, Shahriari Y (2020) Enhancing communication for people in late-stage A.L.S using an fNIRS-based BCI system. IEEE Trans Neural Syst Rehabil Eng 28:1198–1207CrossRef Borgheai SB, McLinden J, Zisk AH, Hosni SI, Deligani RJ, Abtahi M, Mankodiya K, Shahriari Y (2020) Enhancing communication for people in late-stage A.L.S using an fNIRS-based BCI system. IEEE Trans Neural Syst Rehabil Eng 28:1198–1207CrossRef
23.
Zurück zum Zitat Bauernfeind G, Steyrl D, Brunner C, Muller-Putz GR (2014) Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: A comparison between different classifiers, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2004–2007. Bauernfeind G, Steyrl D, Brunner C, Muller-Putz GR (2014) Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: A comparison between different classifiers, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2004–2007.
24.
Zurück zum Zitat Zhang S, Zheng Y, Wang D, Wang L, Ma J, Zhang J, Xu W, Li D, Zhang D (2017) Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface. Neurosci Lett 655:35–40CrossRef Zhang S, Zheng Y, Wang D, Wang L, Ma J, Zhang J, Xu W, Li D, Zhang D (2017) Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface. Neurosci Lett 655:35–40CrossRef
25.
Zurück zum Zitat Erdoĝan SB, Özsarfati E, Dilek B, Kadak KS, Hanoĝlu L, Akın A (2019) Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng 16:026029CrossRef Erdoĝan SB, Özsarfati E, Dilek B, Kadak KS, Hanoĝlu L, Akın A (2019) Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng 16:026029CrossRef
26.
Zurück zum Zitat Noori FM, Naseer N, Qureshi NK, Nazeer H, Khan RA (2017) Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Neurosci Lett 647:61–66CrossRef Noori FM, Naseer N, Qureshi NK, Nazeer H, Khan RA (2017) Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Neurosci Lett 647:61–66CrossRef
27.
Zurück zum Zitat Choi JW , Kim K, Lee J, Behboodi B, Trakoolwilaiwan T (2017) Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: three-class classification of rest, right-, and left-hand motor execution, Neurophotonics, 5 Choi JW , Kim K, Lee J, Behboodi B, Trakoolwilaiwan T (2017) Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: three-class classification of rest, right-, and left-hand motor execution, Neurophotonics, 5
29.
Zurück zum Zitat Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller K-R, Blankertz B (2012) Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59:519–529CrossRef Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller K-R, Blankertz B (2012) Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59:519–529CrossRef
31.
Zurück zum Zitat Firooz S, Setarehdan SK (2019) IQ estimation by means of EEG-fNIRS recordings during a logical-mathematical intelligence test. Comput Biol Med 110:218–226CrossRef Firooz S, Setarehdan SK (2019) IQ estimation by means of EEG-fNIRS recordings during a logical-mathematical intelligence test. Comput Biol Med 110:218–226CrossRef
32.
Zurück zum Zitat Kim HJ, Wang IN, Kim YT, Kim H, Kim DJ (2020) Comparative analysis of NIRS-EEG motor imagery data using features from spatial, spectral and temporal domain, 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–4 Kim HJ, Wang IN, Kim YT, Kim H, Kim DJ (2020) Comparative analysis of NIRS-EEG motor imagery data using features from spatial, spectral and temporal domain, 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–4
33.
Zurück zum Zitat Chiarelli AM, Croce P, Merla A, Zappasodi F (2018) Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification. J Neural Eng 15:036028CrossRef Chiarelli AM, Croce P, Merla A, Zappasodi F (2018) Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification. J Neural Eng 15:036028CrossRef
35.
Zurück zum Zitat Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15:056013CrossRef Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15:056013CrossRef
36.
Zurück zum Zitat Öztürk Ş (2020) Stacked auto-encoder based tagging with deep features for content-based medical image retrieval. Expert Systt Appl 161:113693CrossRef Öztürk Ş (2020) Stacked auto-encoder based tagging with deep features for content-based medical image retrieval. Expert Systt Appl 161:113693CrossRef
37.
Zurück zum Zitat Abdel-Basset M, El-Shahat D, El-henawy I, Victor Hugo C, de Albuquerque S, Mirjalili, (2020) A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst Appl 139:112824CrossRef Abdel-Basset M, El-Shahat D, El-henawy I, Victor Hugo C, de Albuquerque S, Mirjalili, (2020) A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst Appl 139:112824CrossRef
38.
Zurück zum Zitat Al-Tashi Q, Abdulkadir SJ, Rais HM, Mirjalili S, Alhussian H, Ragab MG, Alqushaibi A (2020) Binary multi-objective grey wolf optimizer for feature selection in classification. IEEE Access 8:106247–106263CrossRef Al-Tashi Q, Abdulkadir SJ, Rais HM, Mirjalili S, Alhussian H, Ragab MG, Alqushaibi A (2020) Binary multi-objective grey wolf optimizer for feature selection in classification. IEEE Access 8:106247–106263CrossRef
39.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
40.
Zurück zum Zitat Shin J, von Luhmann A, Blankertz B, Kim D-W, Jeong J, Hwang H-J, Muller K-R (2017) Open access dataset for EEG+NIRS single-trial classification. IEEE Trans Neural Syst Rehabil Eng 25:1735–1745CrossRef Shin J, von Luhmann A, Blankertz B, Kim D-W, Jeong J, Hwang H-J, Muller K-R (2017) Open access dataset for EEG+NIRS single-trial classification. IEEE Trans Neural Syst Rehabil Eng 25:1735–1745CrossRef
41.
Zurück zum Zitat Müller K-R, Curio G, Sturm I, Ramsey L, Maeder C, Haufe S, Sannelli C, Fazli S, Vidaurre C, Tangermann M, Blankertz B (2010) The berlin brain-computer interface: non-medical uses of BCI technology. Front Neurosci 4:198 Müller K-R, Curio G, Sturm I, Ramsey L, Maeder C, Haufe S, Sannelli C, Fazli S, Vidaurre C, Tangermann M, Blankertz B (2010) The berlin brain-computer interface: non-medical uses of BCI technology. Front Neurosci 4:198
42.
Zurück zum Zitat Khan MJ, Hong K-S (2017) Hybrid EEG–fNIRS-based eight-command decoding for BCI application to quadcopter control. Front Neurorobotics 11:6CrossRef Khan MJ, Hong K-S (2017) Hybrid EEG–fNIRS-based eight-command decoding for BCI application to quadcopter control. Front Neurorobotics 11:6CrossRef
43.
Zurück zum Zitat Yang J, Yao S, Wang J (2018) Deep fusion feature learning network for MI-EEG classification. IEEE Access 6:79050–79059CrossRef Yang J, Yao S, Wang J (2018) Deep fusion feature learning network for MI-EEG classification. IEEE Access 6:79050–79059CrossRef
44.
Zurück zum Zitat Zeng H, Yang C, Dai G, Qin F, Zhang J, Kong W (2018) ) E.E.G. classification of driver mental states by deep learning. Cognit Neurodyn 12:597–606CrossRef Zeng H, Yang C, Dai G, Qin F, Zhang J, Kong W (2018) ) E.E.G. classification of driver mental states by deep learning. Cognit Neurodyn 12:597–606CrossRef
45.
Zurück zum Zitat Zhang D, Yao L, Zhang X, Wang S, Chen W, Boots R, Benatallah B (2018) Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface, AAAI Zhang D, Yao L, Zhang X, Wang S, Chen W, Boots R, Benatallah B (2018) Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface, AAAI
47.
Zurück zum Zitat Stamoulis C, Gruber LJ, Schomer DL, Chang BS (2012) High-frequency neuronal network modulations encoded in scalp E.E.G. precede the onset of focal seizures. Epilepsy Behav 23:471–480CrossRef Stamoulis C, Gruber LJ, Schomer DL, Chang BS (2012) High-frequency neuronal network modulations encoded in scalp E.E.G. precede the onset of focal seizures. Epilepsy Behav 23:471–480CrossRef
Metadaten
Titel
A novel classification framework using multiple bandwidth method with optimized CNN for brain–computer interfaces with EEG-fNIRS signals
verfasst von
Majid Nour
Şaban Öztürk
Kemal Polat
Publikationsdatum
09.07.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 22/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06202-4

Weitere Artikel der Ausgabe 22/2021

Neural Computing and Applications 22/2021 Zur Ausgabe

Premium Partner