Skip to main content
Erschienen in: Neural Computing and Applications 23/2021

24.06.2021 | Original Article

Deep learning models for forecasting aviation demand time series

verfasst von: Andreas Kanavos, Fotios Kounelis, Lazaros Iliadis, Christos Makris

Erschienen in: Neural Computing and Applications | Ausgabe 23/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The analysis along with the modeling of passenger demand dynamic, which deem to have vital implications on the management and the operation within the entire aviation industry, are regarded to be an extreme challenge. However, air passenger demand introduces reliably complex non-linearity and non-stationarity. In this paper, we have tried to forecast aviation demand with the use of time series and deep learning techniques. We have developed air travel demand estimation and forecasting models, using classical Autoregressive Integrated Moving Average methods (ARIMA), Seasonal approaches (SARIMA) and Deep Learning Neural Networks (DLNN). Moreover, this research has performed a qualitative comparison of the aforementioned techniques aiming to serve as a guideline toward the choice of the optimal modeling approach. The experimental results have shown that the proposed approaches can provide significant assistance in forecasting air travel demand, by producing both accurate and robust results. Therefore, this approach can be utilized as a tool to be reliably employed for air passenger demand forecasting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Andreoni A, Postorino MN (2006) A multivariate arima model to forecast air transport demand. Assoc Eur Transp Contribut pp 1–14 Andreoni A, Postorino MN (2006) A multivariate arima model to forecast air transport demand. Assoc Eur Transp Contribut pp 1–14
2.
Zurück zum Zitat Baker D, Merkert R, Kamruzzaman M (2015) Regional aviation and economic growth: cointegration and causality analysis in australia. J Trans Geograp 43:140–150CrossRef Baker D, Merkert R, Kamruzzaman M (2015) Regional aviation and economic growth: cointegration and causality analysis in australia. J Trans Geograp 43:140–150CrossRef
3.
Zurück zum Zitat Bao Y, Xiong T , Hu Z (2012) Forecasting air passenger traffic by support vector machines with ensemble empirical mode decomposition and slope-based method. Dis Dynam Nat Soc Bao Y, Xiong T , Hu Z (2012) Forecasting air passenger traffic by support vector machines with ensemble empirical mode decomposition and slope-based method. Dis Dynam Nat Soc
4.
Zurück zum Zitat Box GEP, Jenkins GM, Reinsel GC (2011) Time series analysis: Forecasting and Control, vol 734. John Wiley & Sons Box GEP, Jenkins GM, Reinsel GC (2011) Time series analysis: Forecasting and Control, vol 734. John Wiley & Sons
5.
Zurück zum Zitat Bozdogan H (1987) Model selection and akaike’s information criterion (aic): the general theory and its analytical extensions. Psychometrika 52(3):345–370MathSciNetCrossRef Bozdogan H (1987) Model selection and akaike’s information criterion (aic): the general theory and its analytical extensions. Psychometrika 52(3):345–370MathSciNetCrossRef
6.
Zurück zum Zitat Ciresan DC, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3642–3649 Ciresan DC, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3642–3649
7.
Zurück zum Zitat Das D, Lee CSG (2018) Cross-scene trajectory level intention inference using gaussian process regression and naive registration. Purdue University, Tech. rep Das D, Lee CSG (2018) Cross-scene trajectory level intention inference using gaussian process regression and naive registration. Purdue University, Tech. rep
8.
Zurück zum Zitat Diebold FX (1998) Elements of forecasting. South-Western College Pub Diebold FX (1998) Elements of forecasting. South-Western College Pub
9.
Zurück zum Zitat Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159MathSciNetMATH Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159MathSciNetMATH
10.
Zurück zum Zitat Ewees AA, Elaziz MA, Alameer Z, Ye H, Jianhua Z (2020) Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility. Resour Policy 65(101):555 Ewees AA, Elaziz MA, Alameer Z, Ye H, Jianhua Z (2020) Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility. Resour Policy 65(101):555
11.
Zurück zum Zitat Flyvbjerg B, Holm MKS, Buhl SL (2005) How (in)accurate are demand forecasts in public works projects?: the case of transportation. J Am Plan Assoc 71(2):131–146CrossRef Flyvbjerg B, Holm MKS, Buhl SL (2005) How (in)accurate are demand forecasts in public works projects?: the case of transportation. J Am Plan Assoc 71(2):131–146CrossRef
12.
Zurück zum Zitat Freeman JA, Skapura DM (1991) Neural networks: algorithms, applications, and programming techniques. Addison-Wesley, Computation and Neural Systems SeriesMATH Freeman JA, Skapura DM (1991) Neural networks: algorithms, applications, and programming techniques. Addison-Wesley, Computation and Neural Systems SeriesMATH
13.
Zurück zum Zitat Goel H, Melnyk I, Oza N, Matthews B, Banerjee A (2016) Multivariate aviation time series modeling: Vars vs. lstms. Unpublished manuscript Retrieved from https://www semanticscholar org/paper/Multivariate-Aviation-Time-Series-Modeling Goel H, Melnyk I, Oza N, Matthews B, Banerjee A (2016) Multivariate aviation time series modeling: Vars vs. lstms. Unpublished manuscript Retrieved from https://​www semanticscholar org/​paper/​Multivariate-Aviation-Time-Series-Modeling
14.
Zurück zum Zitat Gourgaris P, Kanavos A, Makris C, Perrakis G (2015) Review-based entity-ranking refinement. In: 11th International Conference on Web Information Systems and Technologies (WEBIST), pp 402–410 Gourgaris P, Kanavos A, Makris C, Perrakis G (2015) Review-based entity-ranking refinement. In: 11th International Conference on Web Information Systems and Technologies (WEBIST), pp 402–410
15.
Zurück zum Zitat Gulli A, Pal S (2017) Deep learning with keras. Packt Publishing Ltd Gulli A, Pal S (2017) Deep learning with keras. Packt Publishing Ltd
16.
Zurück zum Zitat Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef
17.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167
18.
Zurück zum Zitat Jin F, Li Y, Sun S, Li H (2020) Forecasting air passenger demand with a new hybrid ensemble approach. J Air Trans Manag 83(101):744 Jin F, Li Y, Sun S, Li H (2020) Forecasting air passenger demand with a new hybrid ensemble approach. J Air Trans Manag 83(101):744
19.
Zurück zum Zitat Kanavos A, Kafeza E, Makris C (2015) Can we rank emotions? A brand love ranking system for emotional terms. In: 2015 IEEE International Congress on Big Data, pp 71–78 Kanavos A, Kafeza E, Makris C (2015) Can we rank emotions? A brand love ranking system for emotional terms. In: 2015 IEEE International Congress on Big Data, pp 71–78
20.
Zurück zum Zitat Khashei M, Hajirahimi Z (2019) A comparative study of series arima/mlp hybrid models for stock price forecasting. Commun Statistics - Simul Comput 48:2625–2640MathSciNetCrossRef Khashei M, Hajirahimi Z (2019) A comparative study of series arima/mlp hybrid models for stock price forecasting. Commun Statistics - Simul Comput 48:2625–2640MathSciNetCrossRef
21.
Zurück zum Zitat Kim S, Shin DH (2016) Forecasting short-term air passenger demand using big data from search engine queries. Autom Construc 70:98–108CrossRef Kim S, Shin DH (2016) Forecasting short-term air passenger demand using big data from search engine queries. Autom Construc 70:98–108CrossRef
22.
Zurück zum Zitat Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR) Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR)
23.
Zurück zum Zitat Krishnamurthy G, Majumder N, Poria S, Cambria E (2018) A deep learning approach for multimodal deception detection. CoRR abs/1803.00344 Krishnamurthy G, Majumder N, Poria S, Cambria E (2018) A deep learning approach for multimodal deception detection. CoRR abs/1803.00344
24.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: 26th Annual Conference on Neural Information Processing Systems (NIPS), pp 1106–1114 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: 26th Annual Conference on Neural Information Processing Systems (NIPS), pp 1106–1114
25.
Zurück zum Zitat Li C (2019) Combined forecasting of civil aviation passenger volume based on ARIMA-REGRESSION. Int J Syst Assurance Eng Manag 10(5):945–952CrossRef Li C (2019) Combined forecasting of civil aviation passenger volume based on ARIMA-REGRESSION. Int J Syst Assurance Eng Manag 10(5):945–952CrossRef
26.
Zurück zum Zitat Li J, Huang P, Yang Y, Peng Q (2019) Passenger flow prediction of high speed railway based on lstm deep neural network. In: 8th International Conference on Railway Operations Modelling and Analysis (ICROMA), pp 723–739 Li J, Huang P, Yang Y, Peng Q (2019) Passenger flow prediction of high speed railway based on lstm deep neural network. In: 8th International Conference on Railway Operations Modelling and Analysis (ICROMA), pp 723–739
27.
Zurück zum Zitat Maheshwari A, Davendralingam N, DeLaurentis DA (2018) A comparative study of machine learning techniques for aviation applications. In: 2018 Aviation Technology, Integration, and Operations Conference, p 3980 Maheshwari A, Davendralingam N, DeLaurentis DA (2018) A comparative study of machine learning techniques for aviation applications. In: 2018 Aviation Technology, Integration, and Operations Conference, p 3980
28.
Zurück zum Zitat Mao Y, Zhang J, Qi H, Wang L (2019) DNN-MVL: dnn-multi-view-learning-based recover block missing data in a dam safety monitoring system. Sensors 19(13):2895CrossRef Mao Y, Zhang J, Qi H, Wang L (2019) DNN-MVL: dnn-multi-view-learning-based recover block missing data in a dam safety monitoring system. Sensors 19(13):2895CrossRef
29.
Zurück zum Zitat Ming W, Bao Y, Hu Z, Xiong T (2014) Multistep-ahead air passengers traffic prediction with hybrid arima-svms models. Sci World J Ming W, Bao Y, Hu Z, Xiong T (2014) Multistep-ahead air passengers traffic prediction with hybrid arima-svms models. Sci World J
30.
Zurück zum Zitat de O Junior DS, de Oliveira JFL, de Mattos Neto PSG, (2019) An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowl Based Syst 175:72–86 de O Junior DS, de Oliveira JFL, de Mattos Neto PSG, (2019) An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowl Based Syst 175:72–86
31.
Zurück zum Zitat Ozozen A, Kayakutlu G, Ketterer M, Kayalica O (2016) A combined seasonal arima and ann model for improved results in electricity spot price forecasting: Case study in turkey. In: International Conference on Management of Engineering and Technology (PICMET), pp 2681–2690 Ozozen A, Kayakutlu G, Ketterer M, Kayalica O (2016) A combined seasonal arima and ann model for improved results in electricity spot price forecasting: Case study in turkey. In: International Conference on Management of Engineering and Technology (PICMET), pp 2681–2690
32.
Zurück zum Zitat Paolella MS (2018) Linear models and time-series analysis: Regression. John Wiley & Sons, ANOVA, ARMA and GARCHCrossRef Paolella MS (2018) Linear models and time-series analysis: Regression. John Wiley & Sons, ANOVA, ARMA and GARCHCrossRef
33.
Zurück zum Zitat Savvopoulos A, Kanavos A, Mylonas P, Sioutas S (2018) LSTM accelerator for convolutional object identification. Algorithms 11(10):157CrossRef Savvopoulos A, Kanavos A, Mylonas P, Sioutas S (2018) LSTM accelerator for convolutional object identification. Algorithms 11(10):157CrossRef
34.
Zurück zum Zitat Schultz M, Reitmann S (2018) Prediction of aircraft boarding time using lstm network. In: Winter Simulation Conference (WSC), pp 2330–2341 Schultz M, Reitmann S (2018) Prediction of aircraft boarding time using lstm network. In: Winter Simulation Conference (WSC), pp 2330–2341
35.
Zurück zum Zitat Srisaeng P, Baxter GS, Wild G (2015) Forecasting demand for low cost carriers in australia using an artificial neural network approach. Aviation 19(2):90–103CrossRef Srisaeng P, Baxter GS, Wild G (2015) Forecasting demand for low cost carriers in australia using an artificial neural network approach. Aviation 19(2):90–103CrossRef
36.
Zurück zum Zitat Suh DY, Ryerson MS (2019) Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias. Transp Res Part E: Logist Trans Rev 128:400–416CrossRef Suh DY, Ryerson MS (2019) Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias. Transp Res Part E: Logist Trans Rev 128:400–416CrossRef
37.
Zurück zum Zitat Sun S, Lu H, Tsui KL, Wang S (2019) Nonlinear vector auto-regression neural network for forecasting air passenger flow. J Air Trans Manag 78:54–62CrossRef Sun S, Lu H, Tsui KL, Wang S (2019) Nonlinear vector auto-regression neural network for forecasting air passenger flow. J Air Trans Manag 78:54–62CrossRef
38.
Zurück zum Zitat Sutskever I, Martens J, Dahl GE, Hinton GE (2013) On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning (ICML), pp 1139–1147 Sutskever I, Martens J, Dahl GE, Hinton GE (2013) On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning (ICML), pp 1139–1147
39.
Zurück zum Zitat Tsui WHK, Balli HO, Gilbey A, Gow H (2014) Forecasting of hong kong airport’s passenger throughput. Tourism Manag 42:62–76CrossRef Tsui WHK, Balli HO, Gilbey A, Gow H (2014) Forecasting of hong kong airport’s passenger throughput. Tourism Manag 42:62–76CrossRef
40.
Zurück zum Zitat Waciko KJ, B I, (2020) Sarima-elm hybrid model versus sarima-mlp hybrid model. Int J Statist Appl Math 5(2):01–08 Waciko KJ, B I, (2020) Sarima-elm hybrid model versus sarima-mlp hybrid model. Int J Statist Appl Math 5(2):01–08
41.
Zurück zum Zitat Wu N, Green B, Ben X, O’Banion S (2020) Deep transformer models for time series forecasting: The influenza prevalence case. CoRR abs/2001.08317 Wu N, Green B, Ben X, O’Banion S (2020) Deep transformer models for time series forecasting: The influenza prevalence case. CoRR abs/2001.08317
42.
Zurück zum Zitat Xiao Y, Liu JJ, Hu Y, Wang Y, Lai KK, Wang S (2014) A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting. J Air Trans Manag 39:1–11CrossRef Xiao Y, Liu JJ, Hu Y, Wang Y, Lai KK, Wang S (2014) A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting. J Air Trans Manag 39:1–11CrossRef
43.
Zurück zum Zitat Xu S, Chan HK, Zhang T (2019) Forecasting the demand of the aviation industry using hybrid time series sarima-svr approach. Trans Res Part E: Logist Trans Rev 122:169–180CrossRef Xu S, Chan HK, Zhang T (2019) Forecasting the demand of the aviation industry using hybrid time series sarima-svr approach. Trans Res Part E: Logist Trans Rev 122:169–180CrossRef
44.
Zurück zum Zitat Zaccone G (2016) Getting started with tensorFlow. Packt Publishing Ltd Zaccone G (2016) Getting started with tensorFlow. Packt Publishing Ltd
45.
Zurück zum Zitat Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: The state of the art. Int J Forecast 14(1):35–62CrossRef Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: The state of the art. Int J Forecast 14(1):35–62CrossRef
46.
Zurück zum Zitat Zhang J, Zheng Y, Qi D, Li R, Yi X (2016) Dnn-based prediction model for spatio-temporal data. In: 24th ACM SIG/SPATIAL International Conference on Advances in Geographic Information Systems (GIS), pp 92:1–92:4 Zhang J, Zheng Y, Qi D, Li R, Yi X (2016) Dnn-based prediction model for spatio-temporal data. In: 24th ACM SIG/SPATIAL International Conference on Advances in Geographic Information Systems (GIS), pp 92:1–92:4
Metadaten
Titel
Deep learning models for forecasting aviation demand time series
verfasst von
Andreas Kanavos
Fotios Kounelis
Lazaros Iliadis
Christos Makris
Publikationsdatum
24.06.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 23/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06232-y

Weitere Artikel der Ausgabe 23/2021

Neural Computing and Applications 23/2021 Zur Ausgabe

Premium Partner