Skip to main content
Erschienen in: Neural Computing and Applications 23/2021

02.07.2021 | Original Article

Non-iterative online sequential learning strategy for autoencoder and classifier

verfasst von: Adhri Nandini Paul, Peizhi Yan, Yimin Yang, Hui Zhang, Shan Du, Q. M. Jonathan Wu

Erschienen in: Neural Computing and Applications | Ausgabe 23/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial neural network training algorithms aim to optimize the network parameters regarding the pre-defined cost function. Gradient-based artificial neural network training algorithms support iterative learning and have gained immense popularity for training different artificial neural networks end-to-end. However, training through gradient methods is time-consuming. Another family of training algorithms is based on the Moore–Penrose inverse, which is much faster than many other gradient methods. Nevertheless, most of those algorithms are non-iterative and thus do not support mini-batch learning in nature. This work extends two non-iterative Moore–Penrose inverse-based training algorithms to enable online sequential learning: a single-hidden-layer autoencoder training algorithm and a sub-network-based classifier training algorithm. We further present an approach that uses the proposed autoencoder for self-supervised dimension reduction and then uses the proposed classifier for supervised classification. The experimental results show that the proposed approach achieves satisfactory classification accuracy on many benchmark datasets with extremely low time consumption (up to 50 times faster than the support vector machine on CIFAR 10 dataset).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bartlett PL (1996) For valid generalization, the size of the weights is more important than the size of the network. In: Proceedings of the 9th international conference on neural information processing systems Bartlett PL (1996) For valid generalization, the size of the weights is more important than the size of the network. In: Proceedings of the 9th international conference on neural information processing systems
4.
Zurück zum Zitat Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. Advances in neural information processing systems 19 Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. Advances in neural information processing systems 19
6.
Zurück zum Zitat Cao J, Zhao, Y, Lai X, Chen T, Liu N, Mirza B, Lin Z (2015) Landmark recognition via sparse representation. In: 2015 IEEE international conference on digital signal processing (DSP). IEEE, pp 1030–1034 Cao J, Zhao, Y, Lai X, Chen T, Liu N, Mirza B, Lin Z (2015) Landmark recognition via sparse representation. In: 2015 IEEE international conference on digital signal processing (DSP). IEEE, pp 1030–1034
7.
Zurück zum Zitat Deng C, Wang S, Li Z, Huang G, Lin W (2019) Content-insensitive blind image blurriness assessment using weibull statistics and sparse extreme learning machine. IEEE Trans Syst Man Cybern Syst 49(3):516–527CrossRef Deng C, Wang S, Li Z, Huang G, Lin W (2019) Content-insensitive blind image blurriness assessment using weibull statistics and sparse extreme learning machine. IEEE Trans Syst Man Cybern Syst 49(3):516–527CrossRef
8.
Zurück zum Zitat Dong G, Liao G, Liu H, Kuang G (2018) A review of the autoencoder and its variants: a comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geosci Remote Sens Mag 6(3):44–68CrossRef Dong G, Liao G, Liu H, Kuang G (2018) A review of the autoencoder and its variants: a comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geosci Remote Sens Mag 6(3):44–68CrossRef
10.
Zurück zum Zitat Fernandez-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems?. J Mach Learn Res 15:3133–3181MathSciNetMATH Fernandez-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems?. J Mach Learn Res 15:3133–3181MathSciNetMATH
16.
Zurück zum Zitat Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507MathSciNetCrossRef Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507MathSciNetCrossRef
17.
Zurück zum Zitat Hinton G, Roweis S (2003) Stochastic neighbor embedding. Advances in neural information processing systems, 2002 Hinton G, Roweis S (2003) Stochastic neighbor embedding. Advances in neural information processing systems, 2002
18.
Zurück zum Zitat Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507MathSciNetCrossRef Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507MathSciNetCrossRef
19.
Zurück zum Zitat Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44:2405–2417CrossRef Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44:2405–2417CrossRef
20.
Zurück zum Zitat Huang GB, Chen L, Siew CK et al (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef Huang GB, Chen L, Siew CK et al (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef
21.
Zurück zum Zitat Huang GB, Saratchandran P, Sundararajan N (2005) An efficient sequential learning algorithm for growing and pruning rbf (gap-rbf) networks. IEEE Trans Syst Man Cybern Part B 34(6):2284–2292CrossRef Huang GB, Saratchandran P, Sundararajan N (2005) An efficient sequential learning algorithm for growing and pruning rbf (gap-rbf) networks. IEEE Trans Syst Man Cybern Part B 34(6):2284–2292CrossRef
23.
Zurück zum Zitat Jia Y, Kwong S, Wang R (2020) Applying exponential family distribution to generalized extreme learning machine. IEEE Trans Syst Man Cybern Syst 50(5):1794–1804CrossRef Jia Y, Kwong S, Wang R (2020) Applying exponential family distribution to generalized extreme learning machine. IEEE Trans Syst Man Cybern Syst 50(5):1794–1804CrossRef
24.
Zurück zum Zitat Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. Advances in neural information processing systems 26. Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. Advances in neural information processing systems 26. 
25.
Zurück zum Zitat Kasun L, Zhou H, Huang GB, Vong CM (2013) Representational learning with elms for big data. IEEE Intell Syst 28:31–34CrossRef Kasun L, Zhou H, Huang GB, Vong CM (2013) Representational learning with elms for big data. IEEE Intell Syst 28:31–34CrossRef
27.
Zurück zum Zitat Kim J (2019) Sequential training algorithm for neural networks. arXiv abs/1905.07490 Kim J (2019) Sequential training algorithm for neural networks. arXiv abs/1905.07490
28.
Zurück zum Zitat Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Tech. rep, Citeseer Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Tech. rep, Citeseer
29.
Zurück zum Zitat Le Roux N, Bengio Y (2008) Representational power of restricted boltzmann machines and deep belief networks. Neural Comput 20(6):1631–1649MathSciNetCrossRef Le Roux N, Bengio Y (2008) Representational power of restricted boltzmann machines and deep belief networks. Neural Comput 20(6):1631–1649MathSciNetCrossRef
30.
Zurück zum Zitat Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423CrossRef Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423CrossRef
31.
Zurück zum Zitat Liu B, Xia SX, Meng FR, Zhou Y (2015) Extreme spectral regression for efficient regularized subspace learning. Neurocomputing 149:171–179CrossRef Liu B, Xia SX, Meng FR, Zhou Y (2015) Extreme spectral regression for efficient regularized subspace learning. Neurocomputing 149:171–179CrossRef
32.
Zurück zum Zitat Lu Y, Sundararajan N, Saratchandran P (1998) Performance evaluation of a sequential minimal radial basis function (rbf) neural network learning algorithm. IEEE Trans Neural Netw 9(2):308–18CrossRef Lu Y, Sundararajan N, Saratchandran P (1998) Performance evaluation of a sequential minimal radial basis function (rbf) neural network learning algorithm. IEEE Trans Neural Netw 9(2):308–18CrossRef
33.
Zurück zum Zitat Mayne AJ (1972) Generalized inverse of matrices and its applications. J Oper Res Soc 23(4):598 Mayne AJ (1972) Generalized inverse of matrices and its applications. J Oper Res Soc 23(4):598
34.
Zurück zum Zitat Pao YH, Park GH, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2):163–180CrossRef Pao YH, Park GH, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2):163–180CrossRef
36.
Zurück zum Zitat Robins A (2004) Sequential learning in neural networks: a review and a discussion of pseudorehearsal based methods. Intell Data Anal 8(3):301–322MathSciNetCrossRef Robins A (2004) Sequential learning in neural networks: a review and a discussion of pseudorehearsal based methods. Intell Data Anal 8(3):301–322MathSciNetCrossRef
37.
Zurück zum Zitat Yang Y, Wu QJ, Feng X, Akilan T (2019) Recomputation of the dense layers for performance improvement of dcnn. IEEE Trans Pattern Anal Mach Intell 42(11):2912–2925 Yang Y, Wu QJ, Feng X, Akilan T (2019) Recomputation of the dense layers for performance improvement of dcnn. IEEE Trans Pattern Anal Mach Intell 42(11):2912–2925
38.
Zurück zum Zitat Yang Y, Wu QJ, Wang Y (2018) Autoencoder with invertible functions for dimension reduction and image reconstruction. IEEE Trans Syst Man Cybern Syst 48(7):1065–1079CrossRef Yang Y, Wu QJ, Wang Y (2018) Autoencoder with invertible functions for dimension reduction and image reconstruction. IEEE Trans Syst Man Cybern Syst 48(7):1065–1079CrossRef
Metadaten
Titel
Non-iterative online sequential learning strategy for autoencoder and classifier
verfasst von
Adhri Nandini Paul
Peizhi Yan
Yimin Yang
Hui Zhang
Shan Du
Q. M. Jonathan Wu
Publikationsdatum
02.07.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 23/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06233-x

Weitere Artikel der Ausgabe 23/2021

Neural Computing and Applications 23/2021 Zur Ausgabe

Premium Partner