Skip to main content
Erschienen in: Neural Computing and Applications 20/2023

25.08.2021 | S.I.: Machine Learning for Big Data Analytics in Smart Healthcare Systems

Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review

verfasst von: Hamdi Altaheri, Ghulam Muhammad, Mansour Alsulaiman, Syed Umar Amin, Ghadir Ali Altuwaijri, Wadood Abdul, Mohamed A. Bencherif, Mohammed Faisal

Erschienen in: Neural Computing and Applications | Ausgabe 20/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The brain–computer interface (BCI) is an emerging technology that has the potential to revolutionize the world, with numerous applications ranging from healthcare to human augmentation. Electroencephalogram (EEG) motor imagery (MI) is among the most common BCI paradigms that have been used extensively in smart healthcare applications such as post-stroke rehabilitation and mobile assistive robots. In recent years, the contribution of deep learning (DL) has had a phenomenal impact on MI-EEG-based BCI. In this work, we systematically review the DL-based research for MI-EEG classification from the past ten years. This article first explains the procedure for selecting the studies and then gives an overview of BCI, EEG, and MI systems. The DL-based techniques applied in MI classification are then analyzed and discussed from four main perspectives: preprocessing, input formulation, deep learning architecture, and performance evaluation. In the discussion section, three major questions about DL-based MI classification are addressed: (1) Is preprocessing required for DL-based techniques? (2) What input formulations are best for DL-based techniques? (3) What are the current trends in DL-based techniques? Moreover, this work summarizes MI-EEG-based applications, extensively explores public MI-EEG datasets, and gives an overall visualization of the performance attained for each dataset based on the reviewed articles. Finally, current challenges and future directions are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alshehri F, Muhammad G (2021) A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access 9:3660–3678 Alshehri F, Muhammad G (2021) A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access 9:3660–3678
2.
Zurück zum Zitat Masud M, Gaba GS, Alqahtani S, Muhammad G, Gupta BB, Kumar P, Ghoneim A (2020) A lightweight and robust secure key establishment protocol for internet of medical things in COVID-19 patients care. IEEE Inter Things J Masud M, Gaba GS, Alqahtani S, Muhammad G, Gupta BB, Kumar P, Ghoneim A (2020) A lightweight and robust secure key establishment protocol for internet of medical things in COVID-19 patients care. IEEE Inter Things J
3.
Zurück zum Zitat Muhammad G, Alshehri F, Karray F, El Saddik A., Alsulaiman M, Falk TH (2021). A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf Fusion 76:355–375 Muhammad G, Alshehri F, Karray F, El Saddik A., Alsulaiman M, Falk TH (2021). A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf Fusion 76:355–375
4.
Zurück zum Zitat Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Elias-Vinas D, Gutierrez-Martinez J (2018) Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthc Eng 2018:1–10 Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Elias-Vinas D, Gutierrez-Martinez J (2018) Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthc Eng 2018:1–10
5.
Zurück zum Zitat López-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Birbaumer N, Ramos-Murguialday A (2018) Brain-machine interfaces for rehabilitation in stroke: a review. NeuroRehabilitation 43(1):77–97 López-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Birbaumer N, Ramos-Murguialday A (2018) Brain-machine interfaces for rehabilitation in stroke: a review. NeuroRehabilitation 43(1):77–97
6.
Zurück zum Zitat Al-Quraishi MS, Elamvazuthi I, Daud SA, Parasuraman S, Borboni A (2018) EEG-based control for upper and lower limb exoskeletons and prostheses: a systematic review. Sensors 18(10):3342 Al-Quraishi MS, Elamvazuthi I, Daud SA, Parasuraman S, Borboni A (2018) EEG-based control for upper and lower limb exoskeletons and prostheses: a systematic review. Sensors 18(10):3342
7.
Zurück zum Zitat Tayeb Z et al (2019) Validating deep neural networks for online decoding of motor imagery movements from EEG signals. Sensors 19(1):210MathSciNet Tayeb Z et al (2019) Validating deep neural networks for online decoding of motor imagery movements from EEG signals. Sensors 19(1):210MathSciNet
8.
Zurück zum Zitat Fernández-Rodríguez Á, Velasco-Álvarez F, Ron-Angevin R (2016) Review of real brain-controlled wheelchairs. J Neural Eng 13(6):61001 Fernández-Rodríguez Á, Velasco-Álvarez F, Ron-Angevin R (2016) Review of real brain-controlled wheelchairs. J Neural Eng 13(6):61001
9.
Zurück zum Zitat Tang X, Li W, Li X, Ma W, Dang X (2020) Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network. Expert Syst Appl 149:113285 Tang X, Li W, Li X, Ma W, Dang X (2020) Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network. Expert Syst Appl 149:113285
10.
Zurück zum Zitat Li J, Liang J, Zhao Q, Li J, Hong K, Zhang L (2013) Design of assistive wheelchair system directly steered by human thoughts. Int J Neural Syst 23(03):1350013 Li J, Liang J, Zhao Q, Li J, Hong K, Zhang L (2013) Design of assistive wheelchair system directly steered by human thoughts. Int J Neural Syst 23(03):1350013
11.
Zurück zum Zitat Cao L, Xia B, Maysam O, Li J, Xie H, Birbaumer N (2017) A synchronous motor imagery based neural physiological paradigm for brain computer interface speller. Front Hum Neurosci 11:274 Cao L, Xia B, Maysam O, Li J, Xie H, Birbaumer N (2017) A synchronous motor imagery based neural physiological paradigm for brain computer interface speller. Front Hum Neurosci 11:274
12.
Zurück zum Zitat Das Chakladar D, Chakraborty S (2018) Multi-target way of cursor movement in brain computer interface using unsupervised learning. Biol Inspired Cogn Archit 25:88–100 Das Chakladar D, Chakraborty S (2018) Multi-target way of cursor movement in brain computer interface using unsupervised learning. Biol Inspired Cogn Archit 25:88–100
13.
Zurück zum Zitat Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34(4):1443–1449 Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34(4):1443–1449
14.
Zurück zum Zitat Jafarifarmand A, Badamchizadeh MA (2019) EEG artifacts handling in a real practical brain–computer interface controlled vehicle. IEEE Trans Neural Syst Rehabil Eng 27(6):1200–1208 Jafarifarmand A, Badamchizadeh MA (2019) EEG artifacts handling in a real practical brain–computer interface controlled vehicle. IEEE Trans Neural Syst Rehabil Eng 27(6):1200–1208
15.
Zurück zum Zitat Pawar D, Dhage S (2020) Feature extraction methods for electroencephalography based brain-computer interface: a review. IAENG Int J Comput Sci 47(3) Pawar D, Dhage S (2020) Feature extraction methods for electroencephalography based brain-computer interface: a review. IAENG Int J Comput Sci 47(3)
16.
Zurück zum Zitat Djamal EC, Abdullah MY, Renaldi F (2017) Brain computer interface game controlling using fast fourier transform and learning vector quantization. J Telecommun Electron Comput Eng 9(2–5):71–74 Djamal EC, Abdullah MY, Renaldi F (2017) Brain computer interface game controlling using fast fourier transform and learning vector quantization. J Telecommun Electron Comput Eng 9(2–5):71–74
17.
Zurück zum Zitat Kousarrizi MRN, Ghanbari AA, Teshnehlab M, Shorehdeli MA, Gharaviri A (2009) Feature extraction and classification of EEG signals using Wavelet transform, SVM and artificial neural networks for brain computer interfaces. In: 2009 international joint conference on bioinformatics, systems biology and intelligent computing, pp 352–355 Kousarrizi MRN, Ghanbari AA, Teshnehlab M, Shorehdeli MA, Gharaviri A (2009) Feature extraction and classification of EEG signals using Wavelet transform, SVM and artificial neural networks for brain computer interfaces. In: 2009 international joint conference on bioinformatics, systems biology and intelligent computing, pp 352–355
18.
Zurück zum Zitat Wang L, Lan Z, Wang Q, Yang R, Li H (2019) ELM_Kernel and Wavelet packet decomposition based EEG classification algorithm. Autom Control Comput Sci 53(5):452–460 Wang L, Lan Z, Wang Q, Yang R, Li H (2019) ELM_Kernel and Wavelet packet decomposition based EEG classification algorithm. Autom Control Comput Sci 53(5):452–460
19.
Zurück zum Zitat Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446 Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446
20.
Zurück zum Zitat Zhang L, Wen D, Li C, Zhu R (2020) Ensemble classifier based on optimized extreme learning machine for motor imagery classification. J Neural Eng 17(2):26004 Zhang L, Wen D, Li C, Zhu R (2020) Ensemble classifier based on optimized extreme learning machine for motor imagery classification. J Neural Eng 17(2):26004
21.
Zurück zum Zitat Wang K, Zhai DH, Xia Y (2019) Motor imagination EEG recognition algorithm based on DWT, CSP and extreme learning machine. In: 2019 Chinese control conference (CCC), pp 4590–4595 Wang K, Zhai DH, Xia Y (2019) Motor imagination EEG recognition algorithm based on DWT, CSP and extreme learning machine. In: 2019 Chinese control conference (CCC), pp 4590–4595
22.
Zurück zum Zitat Jin Z, Zhou G, Gao D, Zhang Y (2018) EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput Appl 32:1–9 Jin Z, Zhou G, Gao D, Zhang Y (2018) EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput Appl 32:1–9
23.
Zurück zum Zitat Ang KK, Chin ZY, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6:39 Ang KK, Chin ZY, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6:39
24.
Zurück zum Zitat Chen CY, Wu CW, Lin CT, Chen SA (2014) A novel classification method for motor imagery based on brain-computer interface. In: 2014 International joint conference on neural networks (IJCNN), pp 4099–4102 Chen CY, Wu CW, Lin CT, Chen SA (2014) A novel classification method for motor imagery based on brain-computer interface. In: 2014 International joint conference on neural networks (IJCNN), pp 4099–4102
25.
Zurück zum Zitat Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58(6):1865–1873 Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58(6):1865–1873
26.
Zurück zum Zitat Samek W, Vidaurre C, Müller K-R, Kawanabe M (2012) Stationary common spatial patterns for brain–computer interfacing. J Neural Eng 9(2):26013 Samek W, Vidaurre C, Müller K-R, Kawanabe M (2012) Stationary common spatial patterns for brain–computer interfacing. J Neural Eng 9(2):26013
27.
Zurück zum Zitat Samek W, Kawanabe M, Müller K-R (2013) Divergence-based framework for common spatial patterns algorithms. IEEE Rev Biomed Eng 7:50–72 Samek W, Kawanabe M, Müller K-R (2013) Divergence-based framework for common spatial patterns algorithms. IEEE Rev Biomed Eng 7:50–72
28.
Zurück zum Zitat Wu W, Chen Z, Gao X, Li Y, Brown EN, Gao S (2014) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653 Wu W, Chen Z, Gao X, Li Y, Brown EN, Gao S (2014) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653
29.
Zurück zum Zitat Rashid M et al (2020) Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobot 14:25 Rashid M et al (2020) Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobot 14:25
30.
Zurück zum Zitat Zhang X, Yao L, Wang X, Monaghan JJM, Mcalpine D, Zhang Y (2020) A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng 18:031002 Zhang X, Yao L, Wang X, Monaghan JJM, Mcalpine D, Zhang Y (2020) A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng 18:031002
31.
Zurück zum Zitat Altaheri H, Alsulaiman M, Muhammad G (2019) Date Fruit classification for robotic harvesting in a natural environment using deep learning. IEEE Access 7(1):117115–117133 Altaheri H, Alsulaiman M, Muhammad G (2019) Date Fruit classification for robotic harvesting in a natural environment using deep learning. IEEE Access 7(1):117115–117133
32.
Zurück zum Zitat Qamhan M, Altaheri H, Meftah AH, Muhammad G, Alotaibi YA (2021) Digital audio forensics: microphone and environment classification using deep learning. IEEE Access 9:62719–62733 Qamhan M, Altaheri H, Meftah AH, Muhammad G, Alotaibi YA (2021) Digital audio forensics: microphone and environment classification using deep learning. IEEE Access 9:62719–62733
33.
Zurück zum Zitat Muhammad G, Hossain MS, Kumar N (2020) EEG-based pathology detection for home health monitoring. IEEE J Sel Areas Commun 39(2):603–610 Muhammad G, Hossain MS, Kumar N (2020) EEG-based pathology detection for home health monitoring. IEEE J Sel Areas Commun 39(2):603–610
34.
Zurück zum Zitat Muhammad G, Alhamid MF, Long X (2019) Computing and processing on the edge: Smart pathology detection for connected healthcare. IEEE Netw 33(6):44–49 Muhammad G, Alhamid MF, Long X (2019) Computing and processing on the edge: Smart pathology detection for connected healthcare. IEEE Netw 33(6):44–49
35.
Zurück zum Zitat Muhammad G, Rahman SKMM, Alelaiwi A, Alamri A (2017) Smart health solution integrating IoT and cloud: a case study of voice pathology monitoring. IEEE Commun Mag 55(1):69–73 Muhammad G, Rahman SKMM, Alelaiwi A, Alamri A (2017) Smart health solution integrating IoT and cloud: a case study of voice pathology monitoring. IEEE Commun Mag 55(1):69–73
36.
Zurück zum Zitat Lotte F et al (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):31005 Lotte F et al (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):31005
37.
Zurück zum Zitat Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16(3):31001 Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16(3):31001
38.
Zurück zum Zitat Padfield N, Zabalza J, Zhao H, Masero V, Ren J (2019) EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors 19(6):1423 Padfield N, Zabalza J, Zhao H, Masero V, Ren J (2019) EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors 19(6):1423
39.
Zurück zum Zitat Aggarwal S, Chugh N (2019) Signal processing techniques for motor imagery brain computer interface: a review. Array 1:100003 Aggarwal S, Chugh N (2019) Signal processing techniques for motor imagery brain computer interface: a review. Array 1:100003
40.
Zurück zum Zitat Wan Z, Yang R, Huang M, Zeng N, Liu X (2020) A review on transfer learning in EEG signal analysis. Neurocomputing 421:1–14 Wan Z, Yang R, Huang M, Zeng N, Liu X (2020) A review on transfer learning in EEG signal analysis. Neurocomputing 421:1–14
41.
Zurück zum Zitat Lashgari E, Liang D, Maoz U (2020) Data augmentation for deep-learning-based electroencephalography. J Neurosci Methods 2020:108885 Lashgari E, Liang D, Maoz U (2020) Data augmentation for deep-learning-based electroencephalography. J Neurosci Methods 2020:108885
42.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097
43.
Zurück zum Zitat Millán JDR et al (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161 Millán JDR et al (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161
44.
Zurück zum Zitat Greenfield LJ, Geyer JD, Carney PR (2012) Reading EEGs: a practical approach. Lippincott Williams and Wilkins, Philadelphia Greenfield LJ, Geyer JD, Carney PR (2012) Reading EEGs: a practical approach. Lippincott Williams and Wilkins, Philadelphia
45.
Zurück zum Zitat Ball T, Kern M, Mutschler I, Aertsen A, Schulze-Bonhage A (2009) Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage 46(3):708–716 Ball T, Kern M, Mutschler I, Aertsen A, Schulze-Bonhage A (2009) Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage 46(3):708–716
46.
Zurück zum Zitat Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S (2000) Principles of neural science. McGraw-Hill, New York Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S (2000) Principles of neural science. McGraw-Hill, New York
48.
Zurück zum Zitat Lacey S, Lawson R (2013) Multisensory imagery. Springer Science and Business Media, Berlin Lacey S, Lawson R (2013) Multisensory imagery. Springer Science and Business Media, Berlin
49.
Zurück zum Zitat Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I (2018) Brain–computer interface spellers: a review. Brain Sci 8(4):57 Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I (2018) Brain–computer interface spellers: a review. Brain Sci 8(4):57
50.
Zurück zum Zitat Lee MH et al (2019) EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Gigascience 8(5):giz002 Lee MH et al (2019) EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Gigascience 8(5):giz002
51.
Zurück zum Zitat Hassanpour A, Moradikia M, Adeli H, Khayami SR, Shamsinejadbabaki P (2019) A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals. Expert Syst 36(6):e12494 Hassanpour A, Moradikia M, Adeli H, Khayami SR, Shamsinejadbabaki P (2019) A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals. Expert Syst 36(6):e12494
52.
Zurück zum Zitat Pfurtscheller G, Brunner C, Schlögl A, Da Silva FHL (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1):153–159 Pfurtscheller G, Brunner C, Schlögl A, Da Silva FHL (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1):153–159
53.
Zurück zum Zitat Wang Y, Nakanishi M, Zhang D (2019) EEG-based brain-computer interfaces, in neural interface: frontiers and applications. Springer, Berlin, pp 41–65 Wang Y, Nakanishi M, Zhang D (2019) EEG-based brain-computer interfaces, in neural interface: frontiers and applications. Springer, Berlin, pp 41–65
54.
Zurück zum Zitat Zhao X, Zhang H, Zhu G, You F, Kuang S, Sun L (2019) A multi-branch 3D convolutional neural network for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 27(10):2164–2177 Zhao X, Zhang H, Zhu G, You F, Kuang S, Sun L (2019) A multi-branch 3D convolutional neural network for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 27(10):2164–2177
56.
Zurück zum Zitat Zhu K, Wang S, Zheng D, Dai M (2019) Study on the effect of different electrode channel combinations of motor imagery EEG signals on classification accuracy. J Eng 2019(23):8641–8645 Zhu K, Wang S, Zheng D, Dai M (2019) Study on the effect of different electrode channel combinations of motor imagery EEG signals on classification accuracy. J Eng 2019(23):8641–8645
58.
Zurück zum Zitat Liu T, Yang D (2021) A densely connected multi-branch 3D convolutional neural network for motor imagery EEG decoding. Brain Sci 11(2):197 Liu T, Yang D (2021) A densely connected multi-branch 3D convolutional neural network for motor imagery EEG decoding. Brain Sci 11(2):197
59.
Zurück zum Zitat Li Y, Yang H, Li J, Chen D, Du M (2020) EEG-based intention recognition with deep recurrent-convolution neural network: performance and channel selection by Grad-CAM. Neurocomputing 415:225–233 Li Y, Yang H, Li J, Chen D, Du M (2020) EEG-based intention recognition with deep recurrent-convolution neural network: performance and channel selection by Grad-CAM. Neurocomputing 415:225–233
60.
Zurück zum Zitat Yang J, Ma Z, Wang J, Fu Y (2020) A novel deep learning scheme for motor imagery EEG decoding based on spatial representation fusion. IEEE Access 8:202100–202110 Yang J, Ma Z, Wang J, Fu Y (2020) A novel deep learning scheme for motor imagery EEG decoding based on spatial representation fusion. IEEE Access 8:202100–202110
61.
Zurück zum Zitat Chu Y, Zhao X, Zou Y, Xu W, Han J, Zhao Y (2018) A decoding scheme for incomplete motor imagery EEG with deep belief network. Front Neurosci 12:680 Chu Y, Zhao X, Zou Y, Xu W, Han J, Zhao Y (2018) A decoding scheme for incomplete motor imagery EEG with deep belief network. Front Neurosci 12:680
62.
Zurück zum Zitat Jeong J-H, Lee B-H, Lee D-H, Yun Y-D, Lee S-W (2020) EEG classification of forearm movement imagery using a hierarchical flow convolutional neural network. IEEE Access 8:66941–66950 Jeong J-H, Lee B-H, Lee D-H, Yun Y-D, Lee S-W (2020) EEG classification of forearm movement imagery using a hierarchical flow convolutional neural network. IEEE Access 8:66941–66950
63.
Zurück zum Zitat Yang J, Yao S, Wang J (2018) Deep fusion feature learning network for MI-EEG classification. IEEE Access 6:79050–79059 Yang J, Yao S, Wang J (2018) Deep fusion feature learning network for MI-EEG classification. IEEE Access 6:79050–79059
64.
Zurück zum Zitat Fahimi F, Dosen S, Ang KK, Mrachacz-Kersting N, Guan C (2020) Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans Neural Netw Learn Syst 2020:1–13 Fahimi F, Dosen S, Ang KK, Mrachacz-Kersting N, Guan C (2020) Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans Neural Netw Learn Syst 2020:1–13
65.
Zurück zum Zitat Xu B et al (2018) Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access 7:6084–6093 Xu B et al (2018) Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access 7:6084–6093
66.
Zurück zum Zitat Ma X, Qiu S, Wei W, Wang S, He H (2019) Deep channel-correlation network for motor imagery decoding from the same limb. IEEE Trans Neural Syst Rehabil Eng 28(1):297–306 Ma X, Qiu S, Wei W, Wang S, He H (2019) Deep channel-correlation network for motor imagery decoding from the same limb. IEEE Trans Neural Syst Rehabil Eng 28(1):297–306
67.
Zurück zum Zitat Alwasiti H, Yusoff MZ, Raza K (2020) Motor imagery classification for brain computer interface using deep metric learning. IEEE Access 8:109949–109963 Alwasiti H, Yusoff MZ, Raza K (2020) Motor imagery classification for brain computer interface using deep metric learning. IEEE Access 8:109949–109963
68.
Zurück zum Zitat Alazrai R, Abuhijleh M, Alwanni H, Daoud MI (2019) A deep learning framework for decoding motor imagery tasks of the same hand using EEG signals. IEEE Access 7:109612–109627 Alazrai R, Abuhijleh M, Alwanni H, Daoud MI (2019) A deep learning framework for decoding motor imagery tasks of the same hand using EEG signals. IEEE Access 7:109612–109627
69.
Zurück zum Zitat Gómez-Herrero G, et al. (2006) Automatic removal of ocular artifacts in the EEG without an EOG reference channel. In: Proceedings of the 7th nordic signal processing symposium-NORSIG 2006, pp 130–133 Gómez-Herrero G, et al. (2006) Automatic removal of ocular artifacts in the EEG without an EOG reference channel. In: Proceedings of the 7th nordic signal processing symposium-NORSIG 2006, pp 130–133
70.
Zurück zum Zitat Luo T, Chao F (2018) Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinform 19(1):344 Luo T, Chao F (2018) Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinform 19(1):344
71.
Zurück zum Zitat Olivas-Padilla BE, Chacon-Murguia MI (2019) Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl Soft Comput 75:461–472 Olivas-Padilla BE, Chacon-Murguia MI (2019) Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl Soft Comput 75:461–472
72.
Zurück zum Zitat Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Networks Learn Syst 29(11):5619–5629MathSciNet Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Networks Learn Syst 29(11):5619–5629MathSciNet
73.
Zurück zum Zitat Kwon OY, Lee MH, Guan C, Lee SW (2019) Subject-independent brain–computer interfaces based on deep convolutional neural networks. IEEE Trans Neural Networks Learn Syst 31(10):3839–3852 Kwon OY, Lee MH, Guan C, Lee SW (2019) Subject-independent brain–computer interfaces based on deep convolutional neural networks. IEEE Trans Neural Networks Learn Syst 31(10):3839–3852
74.
Zurück zum Zitat She Q, Hu B, Luo Z, Nguyen T, Zhang Y (2018) A hierarchical semi-supervised extreme learning machine method for EEG recognition. Med Biol Eng Comput 57(1):147–157 She Q, Hu B, Luo Z, Nguyen T, Zhang Y (2018) A hierarchical semi-supervised extreme learning machine method for EEG recognition. Med Biol Eng Comput 57(1):147–157
75.
Zurück zum Zitat Taheri S, Ezoji M, Sakhaei SM (2020) Convolutional neural network based features for motor imagery EEG signals classification in brain–computer interface system. SN Appl Sci 2(4):1–12 Taheri S, Ezoji M, Sakhaei SM (2020) Convolutional neural network based features for motor imagery EEG signals classification in brain–computer interface system. SN Appl Sci 2(4):1–12
76.
Zurück zum Zitat Ma X, Wang D, Liu D, Yang J (2020) DWT and CNN based multi-class motor imagery electroencephalographic signal recognition. J Neural Eng 17(1):16073 Ma X, Wang D, Liu D, Yang J (2020) DWT and CNN based multi-class motor imagery electroencephalographic signal recognition. J Neural Eng 17(1):16073
77.
Zurück zum Zitat Lu N, Li T, Ren X, Miao H (2016) A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans neural Syst Rehabil Eng 25(6):566–576 Lu N, Li T, Ren X, Miao H (2016) A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans neural Syst Rehabil Eng 25(6):566–576
78.
Zurück zum Zitat Xu J, Zheng H, Wang J, Li D, Fang X (2020) Recognition of EEG signal motor imagery intention based on deep multi-view feature learning. Sensors 20(12):3496 Xu J, Zheng H, Wang J, Li D, Fang X (2020) Recognition of EEG signal motor imagery intention based on deep multi-view feature learning. Sensors 20(12):3496
79.
Zurück zum Zitat Huang W, Xue Y, Hu L, Liuli H (2020) S-EEGNet: electroencephalogram signal classification based on a separable convolution neural network with bilinear interpolation. IEEE Access 8:131636–131646 Huang W, Xue Y, Hu L, Liuli H (2020) S-EEGNet: electroencephalogram signal classification based on a separable convolution neural network with bilinear interpolation. IEEE Access 8:131636–131646
80.
Zurück zum Zitat Wang P, Jiang A, Liu X, Shang J, Zhang L (2018) LSTM-based EEG classification in motor imagery tasks. IEEE Trans Neural Syst Rehabil Eng 26(11):2086–2095 Wang P, Jiang A, Liu X, Shang J, Zhang L (2018) LSTM-based EEG classification in motor imagery tasks. IEEE Trans Neural Syst Rehabil Eng 26(11):2086–2095
81.
Zurück zum Zitat Bang JS, Lee MH, Fazli S, Guan C, Lee SW (2021) Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Trans Neural Networks Learn Syst 2021:1–12 Bang JS, Lee MH, Fazli S, Guan C, Lee SW (2021) Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Trans Neural Networks Learn Syst 2021:1–12
82.
Zurück zum Zitat Xue J et al (2020) A multifrequency brain network-based deep learning framework for motor imagery decoding. Neural Plast 2020:1–11 Xue J et al (2020) A multifrequency brain network-based deep learning framework for motor imagery decoding. Neural Plast 2020:1–11
83.
Zurück zum Zitat Zhao X, Zhao J, Liu C, Cai W (2020) Deep neural network with joint distribution matching for cross-subject motor imagery brain-computer interfaces. Biomed Res Int 2020:1–15 Zhao X, Zhao J, Liu C, Cai W (2020) Deep neural network with joint distribution matching for cross-subject motor imagery brain-computer interfaces. Biomed Res Int 2020:1–15
84.
Zurück zum Zitat Kumar S, Sharma A, Tsunoda T (2019) Brain wave classification using long short-term memory network based OPTICAL predictor. Sci Rep 9(1):1–13 Kumar S, Sharma A, Tsunoda T (2019) Brain wave classification using long short-term memory network based OPTICAL predictor. Sci Rep 9(1):1–13
85.
Zurück zum Zitat Kumar S, Sharma R, Sharma A (2021) OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals. PeerJ Comput Sci 7:e375 Kumar S, Sharma R, Sharma A (2021) OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals. PeerJ Comput Sci 7:e375
86.
Zurück zum Zitat Cheng L, Li D, Yu G, Zhang Z, Li X, Yu S (2020) A motor imagery EEG feature extraction method based on energy principal component analysis and deep belief networks. IEEE Access 8:21453–21472 Cheng L, Li D, Yu G, Zhang Z, Li X, Yu S (2020) A motor imagery EEG feature extraction method based on energy principal component analysis and deep belief networks. IEEE Access 8:21453–21472
87.
Zurück zum Zitat Zhang R, Zong Q, Dou L, Zhao X (2019) A novel hybrid deep learning scheme for four-class motor imagery classification. J Neural Eng 16(6):66004 Zhang R, Zong Q, Dou L, Zhao X (2019) A novel hybrid deep learning scheme for four-class motor imagery classification. J Neural Eng 16(6):66004
88.
Zurück zum Zitat Zhang R, Zong Q, Dou L, Zhao X, Tang Y, Li Z (2021) Hybrid deep neural network using transfer learning for EEG motor imagery decoding. Biomed Signal Process Control 63:102144 Zhang R, Zong Q, Dou L, Zhao X, Tang Y, Li Z (2021) Hybrid deep neural network using transfer learning for EEG motor imagery decoding. Biomed Signal Process Control 63:102144
89.
Zurück zum Zitat Uktveris T, Jusas V (2017) Application of convolutional neural networks to four-class motor imagery classification problem. Inf Technol Control 46(2):260–273 Uktveris T, Jusas V (2017) Application of convolutional neural networks to four-class motor imagery classification problem. Inf Technol Control 46(2):260–273
90.
Zurück zum Zitat Wang Z, Cao L, Zhang Z, Gong X, Sun Y, Wang H (2018) Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurr Comput Pract Exp 30(23):e4413 Wang Z, Cao L, Zhang Z, Gong X, Sun Y, Wang H (2018) Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurr Comput Pract Exp 30(23):e4413
91.
Zurück zum Zitat Zhang K et al (2020) Data augmentation for motor imagery signal classification based on a hybrid neural network. Sensors 20(16):4485 Zhang K et al (2020) Data augmentation for motor imagery signal classification based on a hybrid neural network. Sensors 20(16):4485
92.
Zurück zum Zitat Shajil N, Mohan S, Srinivasan P, Arivudaiyanambi J, Murrugesan AA (2020) Multiclass classification of spatially filtered motor imagery EEG signals using convolutional neural network for BCI based applications. J Med Biol Eng 40(5):663–672 Shajil N, Mohan S, Srinivasan P, Arivudaiyanambi J, Murrugesan AA (2020) Multiclass classification of spatially filtered motor imagery EEG signals using convolutional neural network for BCI based applications. J Med Biol Eng 40(5):663–672
93.
Zurück zum Zitat Rong Y, Wu X, Zhang Y (2020) Classification of motor imagery electroencephalography signals using continuous small convolutional neural network. Int J Imaging Syst Technol 30(3):653–659 Rong Y, Wu X, Zhang Y (2020) Classification of motor imagery electroencephalography signals using continuous small convolutional neural network. Int J Imaging Syst Technol 30(3):653–659
95.
Zurück zum Zitat Miao M, Hu W, Yin H, Zhang K (2020) Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network. Comput Math Methods Med 2020:1–13 Miao M, Hu W, Yin H, Zhang K (2020) Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network. Comput Math Methods Med 2020:1–13
96.
Zurück zum Zitat Li F, He F, Wang F, Zhang D, Xia Y, Li X (2020) A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning. Appl Sci 10(5):1605 Li F, He F, Wang F, Zhang D, Xia Y, Li X (2020) A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning. Appl Sci 10(5):1605
97.
Zurück zum Zitat Kant P, Laskar SH, Hazarika J, Mahamune R (2020) CWT based transfer learning for motor imagery classification for brain computer interfaces. J Neurosci Methods 345:108886 Kant P, Laskar SH, Hazarika J, Mahamune R (2020) CWT based transfer learning for motor imagery classification for brain computer interfaces. J Neurosci Methods 345:108886
98.
Zurück zum Zitat Tabar YR, Halici U (2016) A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 14(1):16003 Tabar YR, Halici U (2016) A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 14(1):16003
99.
Zurück zum Zitat Dai M, Zheng D, Na R, Wang S, Zhang S (2019) EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3):551 Dai M, Zheng D, Na R, Wang S, Zhang S (2019) EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3):551
100.
Zurück zum Zitat Zhang D, Chen K, Jian D, Yao L (2020) Motor imagery classification via temporal attention cues of graph embedded EEG signals. IEEE J Biomed Heal Inform 24(9):2570–2579 Zhang D, Chen K, Jian D, Yao L (2020) Motor imagery classification via temporal attention cues of graph embedded EEG signals. IEEE J Biomed Heal Inform 24(9):2570–2579
101.
Zurück zum Zitat Leeb R, Brunner C, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI Competition 2008–Graz data set B. Inst Knowl Discov Graz Univ Technol 16:1–6 Leeb R, Brunner C, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI Competition 2008–Graz data set B. Inst Knowl Discov Graz Univ Technol 16:1–6
102.
Zurück zum Zitat Blankertz B et al (2004) The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51(6):1044–1051 Blankertz B et al (2004) The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51(6):1044–1051
103.
Zurück zum Zitat Deng X, Zhang B, Yu N, Liu K, Sun K (2021) Advanced TSGL-EEGNet for motor imagery EEG-based brain-computer interfaces. IEEE Access 9:25118–25130 Deng X, Zhang B, Yu N, Liu K, Sun K (2021) Advanced TSGL-EEGNet for motor imagery EEG-based brain-computer interfaces. IEEE Access 9:25118–25130
104.
Zurück zum Zitat Fan CC, Yang H, Hou ZG, Ni ZL, Chen S, Fang Z (2021) Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG. Cogn Neurodyn 15(1):181–189 Fan CC, Yang H, Hou ZG, Ni ZL, Chen S, Fang Z (2021) Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG. Cogn Neurodyn 15(1):181–189
105.
Zurück zum Zitat Roots K, Muhammad Y, Muhammad N (2020) Fusion convolutional neural network for cross-subject EEG motor imagery classification. Computers 9(3):72 Roots K, Muhammad Y, Muhammad N (2020) Fusion convolutional neural network for cross-subject EEG motor imagery classification. Computers 9(3):72
106.
Zurück zum Zitat Li D, Xu J, Wang J, Fang X, Ying J (2020) A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding. IEEE Trans Neural Syst Rehabil Eng 28:2615–2626 Li D, Xu J, Wang J, Fang X, Ying J (2020) A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding. IEEE Trans Neural Syst Rehabil Eng 28:2615–2626
107.
Zurück zum Zitat Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15(5):56013 Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15(5):56013
108.
Zurück zum Zitat Amin SU, Alsulaiman M, Muhammad G, Bencherif MA, Hossain MS (2019) Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. IEEE Access 7:18940–18950 Amin SU, Alsulaiman M, Muhammad G, Bencherif MA, Hossain MS (2019) Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. IEEE Access 7:18940–18950
109.
Zurück zum Zitat Dose H, Møller JS, Iversen HK, Puthusserypady S (2018) An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst Appl 114:532–542 Dose H, Møller JS, Iversen HK, Puthusserypady S (2018) An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst Appl 114:532–542
110.
Zurück zum Zitat Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik (Stuttg) 130:11–18 Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik (Stuttg) 130:11–18
111.
Zurück zum Zitat Dai G, Zhou J, Huang J, Wang N (2020) HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification. J Neural Eng 17(1):16025 Dai G, Zhou J, Huang J, Wang N (2020) HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification. J Neural Eng 17(1):16025
112.
Zurück zum Zitat Lee B-H, Jeong J-H, Lee S-W (2020) SessionNet: feature similarity-based weighted ensemble learning for motor imagery classification. IEEE Access 8:134524–134535 Lee B-H, Jeong J-H, Lee S-W (2020) SessionNet: feature similarity-based weighted ensemble learning for motor imagery classification. IEEE Access 8:134524–134535
113.
Zurück zum Zitat Wu H et al (2019) A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front Neurosci 13:1275 Wu H et al (2019) A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front Neurosci 13:1275
114.
Zurück zum Zitat Zhang C, Kim Y-K, Eskandarian A (2021) EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification. J Neural Eng 18(4):46014 Zhang C, Kim Y-K, Eskandarian A (2021) EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification. J Neural Eng 18(4):46014
115.
Zurück zum Zitat Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Hossain MS (2019) Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur Gener Comput Syst 101:542–554 Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Hossain MS (2019) Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur Gener Comput Syst 101:542–554
116.
Zurück zum Zitat Xu M et al (2020) Learning EEG topographical representation for classification via convolutional neural network. Pattern Recognit 105:107390 Xu M et al (2020) Learning EEG topographical representation for classification via convolutional neural network. Pattern Recognit 105:107390
117.
Zurück zum Zitat Liao JJ, Luo JJ, Yang T, So RQY, Chua MCH (2020) Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network. Brain Computer Interfaces 7(3–4):47–56 Liao JJ, Luo JJ, Yang T, So RQY, Chua MCH (2020) Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network. Brain Computer Interfaces 7(3–4):47–56
118.
Zurück zum Zitat Li M-A, Han J-F, Duan L-J (2019) A novel MI-EEG imaging with the location information of electrodes. IEEE Access 8:3197–3211 Li M-A, Han J-F, Duan L-J (2019) A novel MI-EEG imaging with the location information of electrodes. IEEE Access 8:3197–3211
119.
Zurück zum Zitat Collazos-Huertas DF, Álvarez-Meza AM, Acosta-Medina CD, Castaño-Duque GA, Castellanos-Dominguez G (2020) CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification. Brain Inform 7(1):1–13 Collazos-Huertas DF, Álvarez-Meza AM, Acosta-Medina CD, Castaño-Duque GA, Castellanos-Dominguez G (2020) CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification. Brain Inform 7(1):1–13
120.
Zurück zum Zitat Hou Y, Zhou L, Jia S, Lun X (2020) A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. J Neural Eng 17(1):16048 Hou Y, Zhou L, Jia S, Lun X (2020) A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. J Neural Eng 17(1):16048
123.
Zurück zum Zitat Zhu X, Li P, Li C, Yao D, Zhang R, Xu P (2019) Separated channel convolutional neural network to realize the training free motor imagery BCI systems. Biomed Signal Process Control 49:396–403 Zhu X, Li P, Li C, Yao D, Zhang R, Xu P (2019) Separated channel convolutional neural network to realize the training free motor imagery BCI systems. Biomed Signal Process Control 49:396–403
124.
Zurück zum Zitat Musallam YK et al (2021) Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomed Signal Process Control 69:102826 Musallam YK et al (2021) Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomed Signal Process Control 69:102826
125.
Zurück zum Zitat Riyad M, Khalil M, Adib A (2021) MI-EEGNET: A novel convolutional neural network for motor imagery classification. J Neurosci Methods 353:109037 Riyad M, Khalil M, Adib A (2021) MI-EEGNET: A novel convolutional neural network for motor imagery classification. J Neurosci Methods 353:109037
126.
Zurück zum Zitat Li D, Wang J, Xu J, Fang X (2019) Densely feature fusion based on convolutional neural networks for motor imagery EEG classification. IEEE Access 7:132720–132730 Li D, Wang J, Xu J, Fang X (2019) Densely feature fusion based on convolutional neural networks for motor imagery EEG classification. IEEE Access 7:132720–132730
127.
Zurück zum Zitat Ha K-W, Jeong J-W (2021) Temporal pyramid pooling for decoding motor-imagery EEG signals. IEEE Access 9:3112–3125 Ha K-W, Jeong J-W (2021) Temporal pyramid pooling for decoding motor-imagery EEG signals. IEEE Access 9:3112–3125
128.
Zurück zum Zitat Zhang K, Robinson N, Lee S-W, Guan C (2021) Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network. Neural Netw 136:1–10 Zhang K, Robinson N, Lee S-W, Guan C (2021) Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network. Neural Netw 136:1–10
129.
Zurück zum Zitat Zhao H, Zheng Q, Ma K, Li H, Zheng Y (2020) Deep representation-based domain adaptation for nonstationary EEG classification. IEEE Trans Neural Networks Learn Syst 32:535–545 Zhao H, Zheng Q, Ma K, Li H, Zheng Y (2020) Deep representation-based domain adaptation for nonstationary EEG classification. IEEE Trans Neural Networks Learn Syst 32:535–545
130.
Zurück zum Zitat Xu G et al (2019) A deep transfer convolutional neural network framework for EEG signal classification. IEEE Access 7:112767–112776 Xu G et al (2019) A deep transfer convolutional neural network framework for EEG signal classification. IEEE Access 7:112767–112776
131.
Zurück zum Zitat Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI Competition 2008–Graz data set A. Inst Knowl Discov Graz Univ Technol 16:1–6 Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI Competition 2008–Graz data set A. Inst Knowl Discov Graz Univ Technol 16:1–6
132.
Zurück zum Zitat Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) EEG datasets for motor imagery brain–computer interface. Gigascience 6(7):gix034 Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) EEG datasets for motor imagery brain–computer interface. Gigascience 6(7):gix034
133.
Zurück zum Zitat Blankertz B, Dornhege G, Krauledat M, Müller K-R, Curio G (2007) The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2):539–550 Blankertz B, Dornhege G, Krauledat M, Müller K-R, Curio G (2007) The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2):539–550
135.
Zurück zum Zitat Li Y, Zhang X-R, Zhang B, Lei M-Y, Cui W-G, Guo Y-Z (2019) A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. IEEE Trans Neural Syst Rehabil Eng 27(6):1170–1180 Li Y, Zhang X-R, Zhang B, Lei M-Y, Cui W-G, Guo Y-Z (2019) A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. IEEE Trans Neural Syst Rehabil Eng 27(6):1170–1180
136.
Zurück zum Zitat Blankertz B et al (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans neural Syst Rehabil Eng 14(2):153–159 Blankertz B et al (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans neural Syst Rehabil Eng 14(2):153–159
137.
Zurück zum Zitat Wang L, Huang W, Yang Z, Zhang C (2020) Temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks. Biomed Signal Process Control 58:101845 Wang L, Huang W, Yang Z, Zhang C (2020) Temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks. Biomed Signal Process Control 58:101845
138.
Zurück zum Zitat Freer D, Yang G-Z (2020) Data augmentation for self-paced motor imagery classification with C-LSTM. J Neural Eng 17(1):16041 Freer D, Yang G-Z (2020) Data augmentation for self-paced motor imagery classification with C-LSTM. J Neural Eng 17(1):16041
139.
Zurück zum Zitat Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220 Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220
140.
Zurück zum Zitat Xiaoling L (2020) Motor imagery-based EEG signals classification by combining temporal and spatial deep characteristics. Int J Intell Comput Cybern 13:437–453 Xiaoling L (2020) Motor imagery-based EEG signals classification by combining temporal and spatial deep characteristics. Int J Intell Comput Cybern 13:437–453
141.
Zurück zum Zitat Zhang K et al (2020) Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks. Comput Math Methods Med 2020:1–10 Zhang K et al (2020) Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks. Comput Math Methods Med 2020:1–10
142.
Zurück zum Zitat Ofner P, Schwarz A, Pereira J, Müller-Putz GR (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE 12(8):e0182578 Ofner P, Schwarz A, Pereira J, Müller-Putz GR (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE 12(8):e0182578
143.
Zurück zum Zitat Chen J, Yu Z, Gu Z, Li Y (2020) Deep temporal-spatial feature learning for motor imagery-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 28(11):2356–2366 Chen J, Yu Z, Gu Z, Li Y (2020) Deep temporal-spatial feature learning for motor imagery-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 28(11):2356–2366
144.
Zurück zum Zitat Steyrl D, Scherer R, Förstner O, Müller-Putz GR (2014) Motor imagery brain-computer interfaces: random forests vs regularized LDA-non-linear beats linear. In: Proceedings of the 6th international brain-computer interface conference, pp 241–244 Steyrl D, Scherer R, Förstner O, Müller-Putz GR (2014) Motor imagery brain-computer interfaces: random forests vs regularized LDA-non-linear beats linear. In: Proceedings of the 6th international brain-computer interface conference, pp 241–244
145.
Zurück zum Zitat Ma X, Qiu S, He H (2020) Multi-channel EEG recording during motor imagery of different joints from the same limb. Sci Data 7(1):1–9 Ma X, Qiu S, He H (2020) Multi-channel EEG recording during motor imagery of different joints from the same limb. Sci Data 7(1):1–9
146.
Zurück zum Zitat Lee HK, Choi Y-S (2019) Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface. Entropy 21(12):1199 Lee HK, Choi Y-S (2019) Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface. Entropy 21(12):1199
147.
Zurück zum Zitat Ortiz-Echeverri CJ, Salazar-Colores S, Rodríguez-Reséndiz J, Gómez-Loenzo RA (2019) A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network. Sensors 19(20):4541 Ortiz-Echeverri CJ, Salazar-Colores S, Rodríguez-Reséndiz J, Gómez-Loenzo RA (2019) A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network. Sensors 19(20):4541
148.
Zurück zum Zitat Chaudhary S, Taran S, Bajaj V, Sengur A (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19(12):4494–4500 Chaudhary S, Taran S, Bajaj V, Sengur A (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19(12):4494–4500
149.
Zurück zum Zitat Tang X-L, Ma W-C, Kong D-S, Li W (2019) Semisupervised deep stacking network with adaptive learning rate strategy for motor imagery EEG recognition. Neural Comput 31(5):919–942MathSciNetMATH Tang X-L, Ma W-C, Kong D-S, Li W (2019) Semisupervised deep stacking network with adaptive learning rate strategy for motor imagery EEG recognition. Neural Comput 31(5):919–942MathSciNetMATH
150.
Zurück zum Zitat Zhang Z et al (2019) A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 7:15945–15954 Zhang Z et al (2019) A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 7:15945–15954
151.
Zurück zum Zitat Tang X, Zhang N, Zhou J, Liu Q (2017) Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition. Neurocomputing 234:1–10 Tang X, Zhang N, Zhou J, Liu Q (2017) Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition. Neurocomputing 234:1–10
152.
Zurück zum Zitat Deng L, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, pp 248–255 Deng L, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, pp 248–255
153.
Zurück zum Zitat Altaheri H, Alsulaiman M, Muhammad G, Amin SU, Bencherif M, Mekhtiche M (2019) Date fruit dataset for intelligent harvesting. Data Br 26:104514 Altaheri H, Alsulaiman M, Muhammad G, Amin SU, Bencherif M, Mekhtiche M (2019) Date fruit dataset for intelligent harvesting. Data Br 26:104514
154.
Zurück zum Zitat Alsulaiman M, Muhammad G, Bencherif MA, Mahmood A, Ali Z (2013) KSU rich Arabic speech database. Information 16(6B):4231–4253 Alsulaiman M, Muhammad G, Bencherif MA, Mahmood A, Ali Z (2013) KSU rich Arabic speech database. Information 16(6B):4231–4253
157.
Zurück zum Zitat Scherer R et al (2015) Individually adapted imagery improves brain-computer interface performance in end-users with disability. PLoS ONE 10(5):e0123727 Scherer R et al (2015) Individually adapted imagery improves brain-computer interface performance in end-users with disability. PLoS ONE 10(5):e0123727
158.
Zurück zum Zitat Kaya M, Binli MK, Ozbay E, Yanar H, Mishchenko Y (2018) A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci Data 5:180211 Kaya M, Binli MK, Ozbay E, Yanar H, Mishchenko Y (2018) A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci Data 5:180211
159.
Zurück zum Zitat Brodu N, Lotte F, Lécuyer A (2012) Exploring two novel features for EEG-based brain–computer interfaces: multifractal cumulants and predictive complexity. Neurocomputing 79:87–94 Brodu N, Lotte F, Lécuyer A (2012) Exploring two novel features for EEG-based brain–computer interfaces: multifractal cumulants and predictive complexity. Neurocomputing 79:87–94
160.
Zurück zum Zitat Ramos-Murguialday A et al (2013) Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74(1):100–108 Ramos-Murguialday A et al (2013) Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74(1):100–108
161.
Zurück zum Zitat Zhang X, Yao L, Sheng QZ, Kanhere SS, Gu T, Zhang D (2018) Converting your thoughts to texts: enabling brain typing via deep feature learning of EEG signals. In: 2018 IEEE international conference on pervasive computing and communications (PerCom), pp 1–10 Zhang X, Yao L, Sheng QZ, Kanhere SS, Gu T, Zhang D (2018) Converting your thoughts to texts: enabling brain typing via deep feature learning of EEG signals. In: 2018 IEEE international conference on pervasive computing and communications (PerCom), pp 1–10
162.
Zurück zum Zitat Van Erp J, Lotte F, Tangermann M (2012) Brain-computer interfaces: beyond medical applications. Computer (Long Beach Calif) 45(4):26–34 Van Erp J, Lotte F, Tangermann M (2012) Brain-computer interfaces: beyond medical applications. Computer (Long Beach Calif) 45(4):26–34
163.
Zurück zum Zitat Yuste R et al (2017) Four ethical priorities for neurotechnologies and AI. Nat News 551(7679):159 Yuste R et al (2017) Four ethical priorities for neurotechnologies and AI. Nat News 551(7679):159
164.
Zurück zum Zitat LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J Neural Eng 10(4):46003 LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J Neural Eng 10(4):46003
165.
Zurück zum Zitat Yu Y et al (2016) Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface. Comput Biol Med 77:148–155 Yu Y et al (2016) Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface. Comput Biol Med 77:148–155
166.
Zurück zum Zitat Zhang X, Yao L, Huang C, Sheng QZ, Wang X (2017) Intent recognition in smart living through deep recurrent neural networks. In: International conference on neural information processing, pp 748–758 Zhang X, Yao L, Huang C, Sheng QZ, Wang X (2017) Intent recognition in smart living through deep recurrent neural networks. In: International conference on neural information processing, pp 748–758
167.
Zurück zum Zitat Li T, Zhang J, Xue T, Wang B (2017) Development of a novel motor imagery control technique and application in a gaming environment. Comput Intell Neurosci 2017:1–16 Li T, Zhang J, Xue T, Wang B (2017) Development of a novel motor imagery control technique and application in a gaming environment. Comput Intell Neurosci 2017:1–16
168.
Zurück zum Zitat Kreilinger A, Hiebel H, Müller-Putz GR (2015) Single versus multiple events error potential detection in a BCI-controlled car game with continuous and discrete feedback. IEEE Trans Biomed Eng 63(3):519–529 Kreilinger A, Hiebel H, Müller-Putz GR (2015) Single versus multiple events error potential detection in a BCI-controlled car game with continuous and discrete feedback. IEEE Trans Biomed Eng 63(3):519–529
169.
Zurück zum Zitat Zhang X, Yao L, Kanhere SS, Liu Y, Gu T, Chen K (2018) Mindid: Person identification from brain waves through attention-based recurrent neural network. Proc ACM Interactive Mobile Wearable Ubiquitous Technol 2(3):1–23 Zhang X, Yao L, Kanhere SS, Liu Y, Gu T, Chen K (2018) Mindid: Person identification from brain waves through attention-based recurrent neural network. Proc ACM Interactive Mobile Wearable Ubiquitous Technol 2(3):1–23
Metadaten
Titel
Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
verfasst von
Hamdi Altaheri
Ghulam Muhammad
Mansour Alsulaiman
Syed Umar Amin
Ghadir Ali Altuwaijri
Wadood Abdul
Mohamed A. Bencherif
Mohammed Faisal
Publikationsdatum
25.08.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 20/2023
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06352-5

Weitere Artikel der Ausgabe 20/2023

Neural Computing and Applications 20/2023 Zur Ausgabe

Premium Partner