Skip to main content
Erschienen in: Neural Computing and Applications 2/2022

30.08.2021 | Original Article

Toward deep MRI segmentation for Alzheimer’s disease detection

verfasst von: Hadeer A. Helaly, Mahmoud Badawy, Amira Y. Haikal

Erschienen in: Neural Computing and Applications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alzheimer’s disease (AD) is an irreversible, progressive, and ultimately fatal brain degenerative disorder, no effective cures for it till now. Despite that, the available treatments can delay its progress. So, early detection of AD plays a crucial role in preventing and controlling its progress. Hippocampus (HC) is among the first impacted brain regions by AD. Its shape and volume are measured using a structural magnetic resonance image (MRI) to help AD diagnosis. Therefore, brain hippocampus segmentation is the building block for AD detection. This study’s main objective is to propose a deep learning Alzheimer’s disease hippocampus segmentation framework (DL-AHS) for automatic left and right hippocampus segmentation to detect and identify AD. The proposed DL-AHS framework is based on the U-Net architecture and estimated on the baseline coronal T1-weighted structural MRI data obtained from Alzheimer’s disease neuroimaging initiative (ADNI) and neuroimaging tools and resources collaboratory (NITRIC) datasets. The dataset is processed using the Medical Image Processing, Analysis, and Visualization (MIPAV) program. Besides, it is augmented using a deep convolutional generative adversarial network (DC-GAN). For left and right HC segmentation from other brain sub-regions, two architectures are proposed. The first utilizes simple hyperparameters tuning in the U-Net (SHPT-Net). The second employs a transfer learning technique in which the ResNet blocks are used in the U-Net (RESU-Net). The empirical results confirmed that the proposed framework achieves high performance, 94.34% accuracy, and 93.5% Dice similarity coefficient for SHPT-Net. Also, 97% accuracy and 94% Dice similarity coefficient are achieved for RESU-Net.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li H, Habes M, Wolk DA, Fan Y (2019) A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dement 15(8):1059–1070CrossRef Li H, Habes M, Wolk DA, Fan Y (2019) A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dement 15(8):1059–1070CrossRef
2.
Zurück zum Zitat Sevigny J et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537(7618):50–56CrossRef Sevigny J et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537(7618):50–56CrossRef
3.
Zurück zum Zitat Wen J et al (2020) Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med Image Anal 63:101694CrossRef Wen J et al (2020) Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med Image Anal 63:101694CrossRef
4.
Zurück zum Zitat Jain R, Aggarwal A, Kumar V (2021) Chapter 1—A review of deep learning-based disease detection in Alzheimer’s patients. In: Jude HD (ed) Handbook of decision support systems for neurological disorders. Academic Press, pp 1–19 Jain R, Aggarwal A, Kumar V (2021) Chapter 1—A review of deep learning-based disease detection in Alzheimer’s patients. In: Jude HD (ed) Handbook of decision support systems for neurological disorders. Academic Press, pp 1–19
5.
Zurück zum Zitat Ding J, Kong W, Mou X, Wang S (2019) Construction of a transcriptional regulatory network of Alzheimer’s disease based on PANDA Algorithm. Interdiscip Sci Comput Life Sci 11(2):226–236CrossRef Ding J, Kong W, Mou X, Wang S (2019) Construction of a transcriptional regulatory network of Alzheimer’s disease based on PANDA Algorithm. Interdiscip Sci Comput Life Sci 11(2):226–236CrossRef
6.
Zurück zum Zitat Yang F et al (2020) Identification of key regulatory genes and pathways in the prefrontal cortex of Alzheimer’s disease. Interdiscip Sci Comput Life Sci 12(1):90–98CrossRef Yang F et al (2020) Identification of key regulatory genes and pathways in the prefrontal cortex of Alzheimer’s disease. Interdiscip Sci Comput Life Sci 12(1):90–98CrossRef
7.
Zurück zum Zitat Hosseini-Asl E, Gimel’farb G, El-Baz A (2016) Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network 502 Hosseini-Asl E, Gimel’farb G, El-Baz A (2016) Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network 502
8.
Zurück zum Zitat Nadal L et al (2020) Differential annualized rates of hippocampal subfields atrophy in aging and future Alzheimer’s clinical syndrome. Neurobiol Aging 90:75–83CrossRef Nadal L et al (2020) Differential annualized rates of hippocampal subfields atrophy in aging and future Alzheimer’s clinical syndrome. Neurobiol Aging 90:75–83CrossRef
9.
Zurück zum Zitat Carmo D, Silva B, Yasuda C, Rittner L, Lotufo R (2021) Hippocampus segmentation on epilepsy and Alzheimer’s disease studies with multiple convolutional neural networks. Heliyon 7(2):e06226CrossRef Carmo D, Silva B, Yasuda C, Rittner L, Lotufo R (2021) Hippocampus segmentation on epilepsy and Alzheimer’s disease studies with multiple convolutional neural networks. Heliyon 7(2):e06226CrossRef
10.
Zurück zum Zitat Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book. Oxford University PressCrossRef Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book. Oxford University PressCrossRef
11.
Zurück zum Zitat Petersen RC et al (2010) Alzheimer’s disease neuroimaging initiative (ADNI). Neurology 74(3):201–209CrossRef Petersen RC et al (2010) Alzheimer’s disease neuroimaging initiative (ADNI). Neurology 74(3):201–209CrossRef
12.
Zurück zum Zitat Wang L et al (2003) Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. Neuroimage 20(2):667–682CrossRef Wang L et al (2003) Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. Neuroimage 20(2):667–682CrossRef
13.
Zurück zum Zitat Duraisamy B, Shanmugam JV, Annamalai J (2019) Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network. Brain Imaging Behav 13(1):87–110CrossRef Duraisamy B, Shanmugam JV, Annamalai J (2019) Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network. Brain Imaging Behav 13(1):87–110CrossRef
14.
Zurück zum Zitat Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Annual conference on medical image understanding and analysis, pp 506–517 Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Annual conference on medical image understanding and analysis, pp 506–517
15.
Zurück zum Zitat Ghosh S, Das N, Das I, Maulik U (2019) Understanding deep learning techniques for image segmentation. ACM Comput Surv 52(4):1–58CrossRef Ghosh S, Das N, Das I, Maulik U (2019) Understanding deep learning techniques for image segmentation. ACM Comput Surv 52(4):1–58CrossRef
16.
Zurück zum Zitat Shaken M et al (2016) Sub-cortical brain structure segmentation using F-CNN’S. Proc—Int Symp Biomed Imaging 2016:269–272 Shaken M et al (2016) Sub-cortical brain structure segmentation using F-CNN’S. Proc—Int Symp Biomed Imaging 2016:269–272
17.
Zurück zum Zitat Seo H et al (2020) Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med Phys 47(5):e148–e167CrossRef Seo H et al (2020) Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med Phys 47(5):e148–e167CrossRef
18.
Zurück zum Zitat Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B et al (2020) 3D deep learning on medical images: a review. Sensors 20(18):5097CrossRef Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B et al (2020) 3D deep learning on medical images: a review. Sensors 20(18):5097CrossRef
19.
Zurück zum Zitat Kalavathi P, Christy AAA, Priya T (2017) Detection of Alzheimer disease in MR brain images using FFCM method. Comput Methods, Commun Tech Inf 140–144 Kalavathi P, Christy AAA, Priya T (2017) Detection of Alzheimer disease in MR brain images using FFCM method. Comput Methods, Commun Tech Inf 140–144
20.
Zurück zum Zitat Biju KS, Alfa SS, Lal K, Antony A, Akhil MK (2017) Alzheimer’s detection based on segmentation of MRI image. Procedia Comput Sci 115:474–481CrossRef Biju KS, Alfa SS, Lal K, Antony A, Akhil MK (2017) Alzheimer’s detection based on segmentation of MRI image. Procedia Comput Sci 115:474–481CrossRef
21.
Zurück zum Zitat Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation and classification of the human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors (Switzerland) 20(11):1–31CrossRef Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation and classification of the human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors (Switzerland) 20(11):1–31CrossRef
22.
Zurück zum Zitat Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef
23.
Zurück zum Zitat Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
24.
Zurück zum Zitat Li F, Tran L, Thung K-H, Ji S, Shen D, Li J (2015) A robust deep model for improved classification of AD/MCI patients. IEEE J Biomed Heal Inf 19(5):1610–1616CrossRef Li F, Tran L, Thung K-H, Ji S, Shen D, Li J (2015) A robust deep model for improved classification of AD/MCI patients. IEEE J Biomed Heal Inf 19(5):1610–1616CrossRef
25.
Zurück zum Zitat Zeng N, Zhang H, Song B, Liu W, Li Y, Dobaie AM (2018) Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273:643–649CrossRef Zeng N, Zhang H, Song B, Liu W, Li Y, Dobaie AM (2018) Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273:643–649CrossRef
26.
Zurück zum Zitat Lin W et al (2018) Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front Neurosci 12:777CrossRef Lin W et al (2018) Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front Neurosci 12:777CrossRef
27.
Zurück zum Zitat Chen Y (2019) Intelligent systems reference library 171 deep learning in healthcare Chen Y (2019) Intelligent systems reference library 171 deep learning in healthcare
28.
Zurück zum Zitat Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 1520–1528 Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 1520–1528
29.
Zurück zum Zitat Lguensat R, Sun M, Fablet R, Tandeo P, Mason E, Chen G (2018) EddyNet: a deep neural network for pixel-wise classification of oceanic eddies. In: IGARSS 2018–2018 IEEE international geoscience and remote sensing symposium, pp 1764–1767 Lguensat R, Sun M, Fablet R, Tandeo P, Mason E, Chen G (2018) EddyNet: a deep neural network for pixel-wise classification of oceanic eddies. In: IGARSS 2018–2018 IEEE international geoscience and remote sensing symposium, pp 1764–1767
30.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci. (includingSubser. Lect. Notes Artif. Intell. Lect. Notes Bioinformat) 9351:234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci. (includingSubser. Lect. Notes Artif. Intell. Lect. Notes Bioinformat) 9351:234–241
31.
Zurück zum Zitat Dolz J, Desrosiers C, Ben Ayed I (2018) 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study. Neuroimage 170:456–470CrossRef Dolz J, Desrosiers C, Ben Ayed I (2018) 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study. Neuroimage 170:456–470CrossRef
32.
Zurück zum Zitat Allioui H, Sadgal M, Elfazziki A (2019) Deep MRI segmentation: A convolutional method applied to Alzheimer’s disease detection. Int J Adv Comput Sci Appl 10(11):365–371 Allioui H, Sadgal M, Elfazziki A (2019) Deep MRI segmentation: A convolutional method applied to Alzheimer’s disease detection. Int J Adv Comput Sci Appl 10(11):365–371
33.
Zurück zum Zitat Sun J, Yan S, Song C, Han B (2020) Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease. Int J Comput Assist Radiol Surg 15(3):445–455CrossRef Sun J, Yan S, Song C, Han B (2020) Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease. Int J Comput Assist Radiol Surg 15(3):445–455CrossRef
34.
Zurück zum Zitat Liu M et al (2020) A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 208:116459CrossRef Liu M et al (2020) A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 208:116459CrossRef
35.
Zurück zum Zitat Chitradevi D, Prabha S, Prabhu AD (2020) Diagnosis of Alzheimer disease in MR brain images using optimization techniques. Neural Comput Appl 7:223–237 Chitradevi D, Prabha S, Prabhu AD (2020) Diagnosis of Alzheimer disease in MR brain images using optimization techniques. Neural Comput Appl 7:223–237
36.
Zurück zum Zitat Nobakht S, Schaeffer M, Forkert ND, Nestor S, Black SE, Barber P (2021) Combined atlas and convolutional neural network-based segmentation of the hippocampus from MRI according to the ADNI harmonized protocol. Sensors 21(7):2427CrossRef Nobakht S, Schaeffer M, Forkert ND, Nestor S, Black SE, Barber P (2021) Combined atlas and convolutional neural network-based segmentation of the hippocampus from MRI according to the ADNI harmonized protocol. Sensors 21(7):2427CrossRef
37.
Zurück zum Zitat Chitradevi D, Prabha S (2020) Analysis of brain sub-regions using optimization techniques and deep learning method in Alzheimer disease. Appl Soft Comput J 86:105857CrossRef Chitradevi D, Prabha S (2020) Analysis of brain sub-regions using optimization techniques and deep learning method in Alzheimer disease. Appl Soft Comput J 86:105857CrossRef
38.
Zurück zum Zitat Noor MBT, Zenia NZ, Kaiser MS, Al Mamun S, Mahmud M (2020) Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Brain Inf 7(1):1–21CrossRef Noor MBT, Zenia NZ, Kaiser MS, Al Mamun S, Mahmud M (2020) Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Brain Inf 7(1):1–21CrossRef
39.
Zurück zum Zitat Jo T, Nho K, Saykin AJ (2019) Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using Neuroimaging data. Front Aging Neurosci 11:220CrossRef Jo T, Nho K, Saykin AJ (2019) Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using Neuroimaging data. Front Aging Neurosci 11:220CrossRef
40.
Zurück zum Zitat Liu X, Deng Z, Yang Y (2019) Recent progress in semantic image segmentation. Artif Intell Rev 52(2):1089–1106CrossRef Liu X, Deng Z, Yang Y (2019) Recent progress in semantic image segmentation. Artif Intell Rev 52(2):1089–1106CrossRef
41.
Zurück zum Zitat Russakovsky O et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef Russakovsky O et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef
42.
Zurück zum Zitat Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D. Generative adversarial nets, pp 1–9 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D. Generative adversarial nets, pp 1–9
43.
Zurück zum Zitat Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef
44.
Zurück zum Zitat Venu SK, Ravula S (2021) Evaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray images. Futur Internet 13(1):1–13 Venu SK, Ravula S (2021) Evaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray images. Futur Internet 13(1):1–13
45.
Zurück zum Zitat Deepak S, Ameer PM (2019) Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 111:103345CrossRef Deepak S, Ameer PM (2019) Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 111:103345CrossRef
46.
Zurück zum Zitat Eelbode T et al (2020) Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index. IEEE Trans Med Imaging 39(11):3679–3690CrossRef Eelbode T et al (2020) Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index. IEEE Trans Med Imaging 39(11):3679–3690CrossRef
Metadaten
Titel
Toward deep MRI segmentation for Alzheimer’s disease detection
verfasst von
Hadeer A. Helaly
Mahmoud Badawy
Amira Y. Haikal
Publikationsdatum
30.08.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 2/2022
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06430-8

Weitere Artikel der Ausgabe 2/2022

Neural Computing and Applications 2/2022 Zur Ausgabe

Special issue on Advances of Neural Computing phasing challenges in the era of 4th industrial revolution

Thesaurus-based word embeddings for automated biomedical literature classification

S.I.:Advances of Neural Computing phasing challenges in the era of 4th industrial revolution

Performance improvement for metro passenger flow forecast using spatio-temporal deep neural network

Special issue on Advances of Neural Computing phasing challenges in the era of 4th industrial revolution

Evolving graph convolutional networks for neural architecture search

Premium Partner