Skip to main content
Erschienen in: Neural Computing and Applications 11/2022

31.01.2022 | Original Article

Hybrid deep learning and genetic algorithms approach (HMB-DLGAHA) for the early ultrasound diagnoses of breast cancer

verfasst von: Hossam Magdy Balaha, Mohamed Saif, Ahmed Tamer, Ehab H. Abdelhay

Erschienen in: Neural Computing and Applications | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Breast cancer is one of the most commonly diagnosed cancers in the world that has overtaken lung cancer and is considered a leading cause of molarity. The current study objectives are to (1) design an abstract CNN architecture named “HMB1-BUSI,” (2) suggest a hybrid deep learning and genetic algorithm approach for the learning and optimization named HMB-DLGAHA, (3) apply the transfer learning approach using pre-trained models, (4) study the effects of regularization, optimizers, dropout, and data augmentation through fourteen experiments, and (5) report the state-of-the-art performance metrics compared with other related studies and approaches. The dataset is collected and unified from two different sources (1) “Breast Ultrasound Images Dataset (Dataset BUSI)” and (2) “Breast Ultrasound Image.” The experiments implement the weighted sum (WS) method to judge the overall performance and generalization using loss, accuracy, F1-score, precision, recall, specificity, and area under curve (AUC) metrics with different ratios. MobileNet, MobileNetV2, InceptionResNetV2, DenseNet121, DenseNet169, DenseNet201, RestNet50, ResNet101, ResNet152, RestNet50V2, ResNet101V2, ResNet152V2, Xception, and VGG19 pre-trained CNN models are used in the experiments. Xception reported \(85.17\%\) as the highest WS metric. Xception, ResNet152V2, and ResNet101V2 reported accuracy and F1-score values above \(90\%\). Xception, ResNet152V2, ResNet101V2, and DenseNet169 reported precision values above \(90\%\). Xception and ResNet152V2 reported recall values above \(90\%\). All models unless ResNet152, ResNet50, and ResNet101 reported specificity values above \(90\%\) and unless ResNet152, ResNet50, ResNet101, and VGG19 reported AUC values above \(90\%\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Williams RR, Horm JW (1977) Association of cancer sites with tobacco and alcohol consumption and socioeconomic status of patients: interview study from the third national cancer survey. J Natl Cancer Inst 58(3):525–547CrossRef Williams RR, Horm JW (1977) Association of cancer sites with tobacco and alcohol consumption and socioeconomic status of patients: interview study from the third national cancer survey. J Natl Cancer Inst 58(3):525–547CrossRef
2.
Zurück zum Zitat Ravdin P, Siminoff I, Harvey J (1998) Survey of breast cancer patients concerning their knowledge and expectations of adjuvant therapy. J Clin Oncol 16(2):515–521CrossRef Ravdin P, Siminoff I, Harvey J (1998) Survey of breast cancer patients concerning their knowledge and expectations of adjuvant therapy. J Clin Oncol 16(2):515–521CrossRef
4.
Zurück zum Zitat Harris JR, Lippman ME, Veronesi U, Willett W (1992) Breast cancer. N Engl J Med 327(5):319–328CrossRef Harris JR, Lippman ME, Veronesi U, Willett W (1992) Breast cancer. N Engl J Med 327(5):319–328CrossRef
5.
Zurück zum Zitat Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15(1):36CrossRef Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15(1):36CrossRef
6.
Zurück zum Zitat Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300CrossRef Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300CrossRef
8.
Zurück zum Zitat Elmore JG, Armstrong K, Lehman CD, Fletcher SW (2005) Screening for breast cancer. JAMA 293(10):1245–1256CrossRef Elmore JG, Armstrong K, Lehman CD, Fletcher SW (2005) Screening for breast cancer. JAMA 293(10):1245–1256CrossRef
10.
Zurück zum Zitat Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140CrossRef Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140CrossRef
11.
Zurück zum Zitat Bejnordi BE et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210CrossRef Bejnordi BE et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210CrossRef
12.
Zurück zum Zitat Lang AE, Lozano AM (1998) Parkinsons disease. N Engl J Med 339(16):1130–1143CrossRef Lang AE, Lozano AM (1998) Parkinsons disease. N Engl J Med 339(16):1130–1143CrossRef
13.
Zurück zum Zitat Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. arXiv preprintarXiv:1606.05718 Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. arXiv preprintarXiv:​1606.​05718
14.
Zurück zum Zitat Amrane M, Oukid S, Gagaoua I, Ensari T (2018) Breast cancer classification using machine learning. In: Proceedings of the 2018 electric electronics, computer science, biomedical engineerings’ meeting (EBBT), (IEEE), pp 1–4 Amrane M, Oukid S, Gagaoua I, Ensari T (2018) Breast cancer classification using machine learning. In: Proceedings of the 2018 electric electronics, computer science, biomedical engineerings’ meeting (EBBT), (IEEE), pp 1–4
15.
Zurück zum Zitat Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn 43(1):299–317MATHCrossRef Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn 43(1):299–317MATHCrossRef
16.
Zurück zum Zitat Zhang L, Suganthan PN (2016) A survey of randomized algorithms for training neural networks. Inf Sci 364:146–155MATHCrossRef Zhang L, Suganthan PN (2016) A survey of randomized algorithms for training neural networks. Inf Sci 364:146–155MATHCrossRef
17.
Zurück zum Zitat Flori RD (1992) Product review: brainmaker professional neural network simulation. Comput Invest Am Assoc Individ Invest 11(1) Flori RD (1992) Product review: brainmaker professional neural network simulation. Comput Invest Am Assoc Individ Invest 11(1)
18.
Zurück zum Zitat Scannapieco FA, Mylotte JM (1996) Relationships between periodontal disease and bacterial pneumonia. J Periodontol 67:1114–1122CrossRef Scannapieco FA, Mylotte JM (1996) Relationships between periodontal disease and bacterial pneumonia. J Periodontol 67:1114–1122CrossRef
19.
Zurück zum Zitat Pouyanfar S et al (2018) A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR) 51(5):1–36CrossRef Pouyanfar S et al (2018) A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR) 51(5):1–36CrossRef
20.
Zurück zum Zitat Sun H, et al. (2017) Learning to optimize: training deep neural networks for wireless resource management. In: Proceedings of the 2017 IEEE 18th international workshop on signal processing advances in wireless communications (SPAWC). (IEEE), pp 1–6 Sun H, et al. (2017) Learning to optimize: training deep neural networks for wireless resource management. In: Proceedings of the 2017 IEEE 18th international workshop on signal processing advances in wireless communications (SPAWC). (IEEE), pp 1–6
21.
Zurück zum Zitat Abdulazeem Y, Balaha HM, Bahgat WM, Badawy M (2021) Human action recognition based on transfer learning approach. IEEE Access Abdulazeem Y, Balaha HM, Bahgat WM, Badawy M (2021) Human action recognition based on transfer learning approach. IEEE Access
22.
23.
Zurück zum Zitat Abdel-Hamid O, Deng L, Yu D (2013) Exploring convolutional neural network structures and optimization techniques for speech recognition. Interspeech 11:73–5 Abdel-Hamid O, Deng L, Yu D (2013) Exploring convolutional neural network structures and optimization techniques for speech recognition. Interspeech 11:73–5
24.
Zurück zum Zitat Wold E, Blum T, Keislar D, Wheaten J (1996) Content-based classification, search, and retrieval of audio. IEEE Multimedia 3(3):27–36CrossRef Wold E, Blum T, Keislar D, Wheaten J (1996) Content-based classification, search, and retrieval of audio. IEEE Multimedia 3(3):27–36CrossRef
25.
Zurück zum Zitat Cummings JL (1992) Depression and parkinson’s disease: a review. Am J Psych Cummings JL (1992) Depression and parkinson’s disease: a review. Am J Psych
26.
Zurück zum Zitat Han Z et al (2017) Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep 7(1):1–10 Han Z et al (2017) Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep 7(1):1–10
27.
Zurück zum Zitat Yap MH et al (2017) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22(4):1218–1226CrossRef Yap MH et al (2017) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22(4):1218–1226CrossRef
28.
Zurück zum Zitat Al-Dhabyani W, Gomaa M, Khaled H, Aly F (2019) Deep learning approaches for data augmentation and classification of breast masses using ultrasound images. Int J Adv Comput Sci Appl 10(5):1–11 Al-Dhabyani W, Gomaa M, Khaled H, Aly F (2019) Deep learning approaches for data augmentation and classification of breast masses using ultrasound images. Int J Adv Comput Sci Appl 10(5):1–11
29.
Zurück zum Zitat Masud M, Rashed AEE, Hossain MS (2020) Convolutional neural network-based models for diagnosis of breast cancer. Neural Comput Appl, pp 1–12 Masud M, Rashed AEE, Hossain MS (2020) Convolutional neural network-based models for diagnosis of breast cancer. Neural Comput Appl, pp 1–12
30.
Zurück zum Zitat Lazo JF, Moccia S, Frontoni E, De Momi E (2020) Comparison of different cnns for breast tumor classification from ultrasound images. arXiv preprintarXiv:2012.14517 Lazo JF, Moccia S, Frontoni E, De Momi E (2020) Comparison of different cnns for breast tumor classification from ultrasound images. arXiv preprintarXiv:​2012.​14517
31.
Zurück zum Zitat Moon WK et al (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Prog Biomed 190:105361CrossRef Moon WK et al (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Prog Biomed 190:105361CrossRef
32.
Zurück zum Zitat Vakanski A, Xian M, Freer PE (2020) Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 46(10):2819–2833CrossRef Vakanski A, Xian M, Freer PE (2020) Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 46(10):2819–2833CrossRef
33.
Zurück zum Zitat Chang CY, Srinivasan K, Chen MC, Chen SJ (2020) Svm-enabled intelligent genetic algorithmic model for realizing efficient universal feature selection in breast cyst image acquired via ultrasound sensing systems. Sensors 20(2):432CrossRef Chang CY, Srinivasan K, Chen MC, Chen SJ (2020) Svm-enabled intelligent genetic algorithmic model for realizing efficient universal feature selection in breast cyst image acquired via ultrasound sensing systems. Sensors 20(2):432CrossRef
34.
Zurück zum Zitat Vutakuri N, Maheswari AU (2020) Breast cancer diagnosis using a minkowski distance method based on mutual information and genetic algorithm. Int J Adv Intel Parad 16(3–4):414–433 Vutakuri N, Maheswari AU (2020) Breast cancer diagnosis using a minkowski distance method based on mutual information and genetic algorithm. Int J Adv Intel Parad 16(3–4):414–433
35.
Zurück zum Zitat Davoudi K (2020) Optimizing convolutional neural network parameters using genetic algorithm for breast cancer classification Davoudi K (2020) Optimizing convolutional neural network parameters using genetic algorithm for breast cancer classification
36.
Zurück zum Zitat Simard PY, Steinkraus D, Platt JC, et al. (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Icdar, vol 3 Simard PY, Steinkraus D, Platt JC, et al. (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Icdar, vol 3
37.
Zurück zum Zitat Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional neural network. In: Proceedings of the 2017 international conference on engineering and technology (ICET). (IEEE), pp 1–6 Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional neural network. In: Proceedings of the 2017 international conference on engineering and technology (ICET). (IEEE), pp 1–6
38.
Zurück zum Zitat Li X, Chen P, Fan K (2020) Overview of deep convolutional neural network approaches for satellite remote sensing ship monitoring technology. In: IOP conference series: materials science and engineering. (IOP Publishing), Vol 730, p 012071 Li X, Chen P, Fan K (2020) Overview of deep convolutional neural network approaches for satellite remote sensing ship monitoring technology. In: IOP conference series: materials science and engineering. (IOP Publishing), Vol 730, p 012071
39.
Zurück zum Zitat Balaha HM, Ali HA, Badawy M (2021) Automatic recognition of handwritten Arabic characters: a comprehensive review. Neural Comput Appl 33(7):3011–3034CrossRef Balaha HM, Ali HA, Badawy M (2021) Automatic recognition of handwritten Arabic characters: a comprehensive review. Neural Comput Appl 33(7):3011–3034CrossRef
40.
Zurück zum Zitat Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imag 9(4):611–629CrossRef Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imag 9(4):611–629CrossRef
41.
Zurück zum Zitat Acharya UR et al (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef Acharya UR et al (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef
43.
Zurück zum Zitat Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. arXiv preprintarXiv:1404.2188 Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. arXiv preprintarXiv:​1404.​2188
44.
Zurück zum Zitat Dureja A, Pahwa P (2019) Analysis of non-linear activation functions for classification tasks using convolutional neural networks. Recent Patents Comput Sci 12(3):156–161CrossRef Dureja A, Pahwa P (2019) Analysis of non-linear activation functions for classification tasks using convolutional neural networks. Recent Patents Comput Sci 12(3):156–161CrossRef
45.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Icml Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Icml
47.
Zurück zum Zitat Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (elus). arXiv preprintarXiv:1511.07289 Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (elus). arXiv preprintarXiv:​1511.​07289
48.
Zurück zum Zitat Huang Z, et al. (2020) Sndcnn: Self-normalizing deep cnns with scaled exponential linear units for speech recognition. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). (IEEE), pp 6854–6858 Huang Z, et al. (2020) Sndcnn: Self-normalizing deep cnns with scaled exponential linear units for speech recognition. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). (IEEE), pp 6854–6858
49.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
50.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. (JMLR Workshop and Conference Proceedings), pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. (JMLR Workshop and Conference Proceedings), pp 249–256
51.
Zurück zum Zitat LeCun YA, Bottou L, Orr GB, Müller KR (2012) Efficient backprop. Neural networks: tricks of the trade. Springer, New York, pp 9–48CrossRef LeCun YA, Bottou L, Orr GB, Müller KR (2012) Efficient backprop. Neural networks: tricks of the trade. Springer, New York, pp 9–48CrossRef
52.
53.
Zurück zum Zitat Xu L, Ren JS, Liu C, Jia J (2014) Deep convolutional neural network for image deconvolution. In: Advances in neural information processing systems, pp 1790–1798 Xu L, Ren JS, Liu C, Jia J (2014) Deep convolutional neural network for image deconvolution. In: Advances in neural information processing systems, pp 1790–1798
55.
Zurück zum Zitat Guo T, Dong J, Li H, Gao Y (2017) Simple convolutional neural network on image classification. In: Proceedings of the 2017 IEEE 2nd international conference on big data analysis (ICBDA). (IEEE), pp 721–724 Guo T, Dong J, Li H, Gao Y (2017) Simple convolutional neural network on image classification. In: Proceedings of the 2017 IEEE 2nd international conference on big data analysis (ICBDA). (IEEE), pp 721–724
56.
Zurück zum Zitat Wu H, Gu X (2015) Towards dropout training for convolutional neural networks. Neural Netw 71:1–10CrossRef Wu H, Gu X (2015) Towards dropout training for convolutional neural networks. Neural Netw 71:1–10CrossRef
57.
Zurück zum Zitat Pereyra G, Tucker G, Chorowski J, Kaiser Ł, Hinton G (2017) Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548 Pereyra G, Tucker G, Chorowski J, Kaiser Ł, Hinton G (2017) Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:​1701.​06548
58.
Zurück zum Zitat Ide H, Kurita T (2017) Improvement of learning for cnn with relu activation by sparse regularization. In: Proceedings of the 2017 international joint conference on neural networks (IJCNN). (IEEE), pp 2684–2691 Ide H, Kurita T (2017) Improvement of learning for cnn with relu activation by sparse regularization. In: Proceedings of the 2017 international joint conference on neural networks (IJCNN). (IEEE), pp 2684–2691
59.
Zurück zum Zitat Ruder S (2016) An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 Ruder S (2016) An overview of gradient descent optimization algorithms. CoRR abs/1609.04747
61.
Zurück zum Zitat McMahan HB, et al. (2013) Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1222–1230 McMahan HB, et al. (2013) Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1222–1230
62.
Zurück zum Zitat Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th international conference on international conference on machine learning, vol 28, ICML’13. (JMLR.org), p III-1139-III-1147 Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th international conference on international conference on machine learning, vol 28, ICML’13. (JMLR.org), p III-1139-III-1147
63.
Zurück zum Zitat Kingma D, Ba J (2014) Adam: a method for stochastic optimization. Int Conf Learn Rep Kingma D, Ba J (2014) Adam: a method for stochastic optimization. Int Conf Learn Rep
64.
Zurück zum Zitat Dozat T (2016) Incorporating nesterov momentum into adam Dozat T (2016) Incorporating nesterov momentum into adam
65.
Zurück zum Zitat Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y (2016) Binarized neural networks. In: Proceedings of the 30th international conference on neural information processing systems. (Citeseer), pp 4114–4122 Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y (2016) Binarized neural networks. In: Proceedings of the 30th international conference on neural information processing systems. (Citeseer), pp 4114–4122
66.
Zurück zum Zitat Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7) Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7)
68.
69.
Zurück zum Zitat Ho Y, Wookey S (2019) The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8:4806–4813CrossRef Ho Y, Wookey S (2019) The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8:4806–4813CrossRef
70.
Zurück zum Zitat Zhang Z, Sabuncu MR (2018) Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv preprint arXiv:1805.07836 Zhang Z, Sabuncu MR (2018) Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv preprint arXiv:​1805.​07836
71.
Zurück zum Zitat Balaha HM, Ali HA, Saraya M, Badawy M (2021) A new Arabic handwritten character recognition deep learning system (ahcr-dls). Neural Comput Appl 33(11):6325–6367CrossRef Balaha HM, Ali HA, Saraya M, Badawy M (2021) A new Arabic handwritten character recognition deep learning system (ahcr-dls). Neural Comput Appl 33(11):6325–6367CrossRef
72.
Zurück zum Zitat Gao B, Pavel L (2017) On the properties of the softmax function with application in game theory and reinforcement learning. arXiv preprintarXiv:1704.00805 Gao B, Pavel L (2017) On the properties of the softmax function with application in game theory and reinforcement learning. arXiv preprintarXiv:​1704.​00805
74.
Zurück zum Zitat Howard AG, et al. (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprintarXiv:1704.04861 Howard AG, et al. (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprintarXiv:​1704.​04861
75.
Zurück zum Zitat Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520
76.
Zurück zum Zitat Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258 Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
77.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
78.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. European conference on computer vision. Springer, New York, pp 630–645 He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. European conference on computer vision. Springer, New York, pp 630–645
79.
Zurück zum Zitat Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
80.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
81.
Zurück zum Zitat Christlein V, et al. (2019) Deep generalized max pooling. In: Proceedings of the 2019 international conference on document analysis and recognition (ICDAR). (IEEE), pp 1090–1096 Christlein V, et al. (2019) Deep generalized max pooling. In: Proceedings of the 2019 international conference on document analysis and recognition (ICDAR). (IEEE), pp 1090–1096
82.
Zurück zum Zitat Marler RT, Arora JS (2010) The weighted sum method for multi-objective optimization: new insights. Struct Multidiscip Optim 41(6):853–862MathSciNetMATHCrossRef Marler RT, Arora JS (2010) The weighted sum method for multi-objective optimization: new insights. Struct Multidiscip Optim 41(6):853–862MathSciNetMATHCrossRef
83.
Zurück zum Zitat Bahgat WM, Balaha HM, AbdulAzeem Y, Badawy MM (2021) An optimized transfer learning-based approach for automatic diagnosis of covid-19 from chest x-ray images. PeerJ Comput Sci 7:e555CrossRef Bahgat WM, Balaha HM, AbdulAzeem Y, Badawy MM (2021) An optimized transfer learning-based approach for automatic diagnosis of covid-19 from chest x-ray images. PeerJ Comput Sci 7:e555CrossRef
84.
Zurück zum Zitat Mirjalili S (2019) Genetic algorithm. Evolutionary algorithms and neural networks. Springer, New York, pp 43–55MATHCrossRef Mirjalili S (2019) Genetic algorithm. Evolutionary algorithms and neural networks. Springer, New York, pp 43–55MATHCrossRef
85.
Zurück zum Zitat Kramer O (2017) Genetic algorithms. Genetic algorithm essentials. Springer, New York, pp 11–19MATHCrossRef Kramer O (2017) Genetic algorithms. Genetic algorithm essentials. Springer, New York, pp 11–19MATHCrossRef
86.
Zurück zum Zitat Balaha HM, El-Gendy EM, Saafan MM (2021) Covh2sd: a covid-19 detection approach based on harris hawks optimization and stacked deep learning. Expert Syst Appl 186:115805CrossRef Balaha HM, El-Gendy EM, Saafan MM (2021) Covh2sd: a covid-19 detection approach based on harris hawks optimization and stacked deep learning. Expert Syst Appl 186:115805CrossRef
87.
Zurück zum Zitat Balaha HM, et al. (2021) Recognizing arabic handwritten characters using deep learning and genetic algorithms. Multimedia Tools Appl, pp 1–37 Balaha HM, et al. (2021) Recognizing arabic handwritten characters using deep learning and genetic algorithms. Multimedia Tools Appl, pp 1–37
88.
Zurück zum Zitat Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85CrossRef Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85CrossRef
89.
Zurück zum Zitat Balaha HM, Balaha MH, Ali HA (2021) Hybrid covid-19 segmentation and recognition framework (hmb-hcf) using deep learning and genetic algorithms. Artif Intell Med 119:102156CrossRef Balaha HM, Balaha MH, Ali HA (2021) Hybrid covid-19 segmentation and recognition framework (hmb-hcf) using deep learning and genetic algorithms. Artif Intell Med 119:102156CrossRef
90.
Zurück zum Zitat Deb K, Agrawal RB et al (1995) Simulated binary crossover for continuous search space. Comp Syst 9(2):115–148MathSciNetMATH Deb K, Agrawal RB et al (1995) Simulated binary crossover for continuous search space. Comp Syst 9(2):115–148MathSciNetMATH
91.
Zurück zum Zitat De Falco I, Della Cioppa A, Tarantino E (2002) Mutation-based genetic algorithm: performance evaluation. Appl Soft Comput 1(4):285–299CrossRef De Falco I, Della Cioppa A, Tarantino E (2002) Mutation-based genetic algorithm: performance evaluation. Appl Soft Comput 1(4):285–299CrossRef
92.
Zurück zum Zitat Mathew TV (2012) Genetic algorithm. Report submitted at IIT Bombay Mathew TV (2012) Genetic algorithm. Report submitted at IIT Bombay
93.
Zurück zum Zitat Genlin J (2004) Survey on genetic algorithm. Comput Appl Softw 2:69–73 Genlin J (2004) Survey on genetic algorithm. Comput Appl Softw 2:69–73
94.
Zurück zum Zitat Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48CrossRef
95.
Zurück zum Zitat Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:​1712.​04621
96.
Zurück zum Zitat Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In: Proceedings of the 2018 international interdisciplinary PhD workshop (IIPhDW). (IEEE), pp 117–122 Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In: Proceedings of the 2018 international interdisciplinary PhD workshop (IIPhDW). (IEEE), pp 117–122
97.
98.
Zurück zum Zitat Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A (2020) Dataset of breast ultrasound images. Data Br 28:104863CrossRef Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A (2020) Dataset of breast ultrasound images. Data Br 28:104863CrossRef
99.
Zurück zum Zitat Rodrigues PS (2017) Breast ultrasound image. Mendeley Data 1 Rodrigues PS (2017) Breast ultrasound image. Mendeley Data 1
100.
Zurück zum Zitat Pilgrim M, Willison S (2009) Dive Into Python 3, vol 2. Springer, New YorkCrossRef Pilgrim M, Willison S (2009) Dive Into Python 3, vol 2. Springer, New YorkCrossRef
101.
Zurück zum Zitat Kociołek M, Strzelecki M, Obuchowicz R (2020) Does image normalization and intensity resolution impact texture classification? Comput Med Imaging Graph 81:101716CrossRef Kociołek M, Strzelecki M, Obuchowicz R (2020) Does image normalization and intensity resolution impact texture classification? Comput Med Imaging Graph 81:101716CrossRef
102.
Zurück zum Zitat Balaha HM, Saafan MM (2021) Automatic exam correction framework (aecf) for the mcqs, essays, and equations matching. IEEE Access 9:32368–32389CrossRef Balaha HM, Saafan MM (2021) Automatic exam correction framework (aecf) for the mcqs, essays, and equations matching. IEEE Access 9:32368–32389CrossRef
103.
Zurück zum Zitat Bisong E (2019) Google colaboratory. Building machine learning and deep learning models on google cloud platform. Springer, New York, pp 59–64CrossRef Bisong E (2019) Google colaboratory. Building machine learning and deep learning models on google cloud platform. Springer, New York, pp 59–64CrossRef
104.
Zurück zum Zitat Ketkar N (2017) Introduction to keras. Deep learning with Python. Springer, New York, pp 97–111CrossRef Ketkar N (2017) Introduction to keras. Deep learning with Python. Springer, New York, pp 97–111CrossRef
106.
Zurück zum Zitat Xing J, et al. (2020) Using bi-rads stratifications as auxiliary information for breast masses classification in ultrasound images. IEEE J Biomed Health Inform Xing J, et al. (2020) Using bi-rads stratifications as auxiliary information for breast masses classification in ultrasound images. IEEE J Biomed Health Inform
107.
Zurück zum Zitat Hershey JR, Olsen PA (2007) Approximating the kullback leibler divergence between gaussian mixture models. In: Proceedings of the 2007 ieee international conference on acoustics, speech and signal processing-ICASSP’07. (IEEE), vol. 4, pp IV–317 Hershey JR, Olsen PA (2007) Approximating the kullback leibler divergence between gaussian mixture models. In: Proceedings of the 2007 ieee international conference on acoustics, speech and signal processing-ICASSP’07. (IEEE), vol. 4, pp IV–317
Metadaten
Titel
Hybrid deep learning and genetic algorithms approach (HMB-DLGAHA) for the early ultrasound diagnoses of breast cancer
verfasst von
Hossam Magdy Balaha
Mohamed Saif
Ahmed Tamer
Ehab H. Abdelhay
Publikationsdatum
31.01.2022
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2022
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06851-5

Weitere Artikel der Ausgabe 11/2022

Neural Computing and Applications 11/2022 Zur Ausgabe

Premium Partner