Skip to main content
Erschienen in: Neural Computing and Applications 3/2023

07.02.2022 | S.I.: Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIOT 2021)

A multiagent deep deterministic policy gradient-based distributed protection method for distribution network

verfasst von: Peng Zeng, Shijie Cui, Chunhe Song, Zhongfeng Wang, Guangye Li

Erschienen in: Neural Computing and Applications | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Relay protection system plays an important role in the safe and stable operation of distribution network (DN), and the traditional model-based relay protection algorithms are difficult to solve the impact of the increasing uncertainty caused by distributed generation (DG) access on the security of DN. To solve this issue, first, the relay protection characteristics of DN under DG access are analyzed; second, the DN relay protection problem is transformed into multiagent reinforcement learning (RL) problem; third, a DN distributed protection method based on multiagent deep deterministic policy gradient (MADDPG) is proposed. The advantage of this method is that there is no need to build a DN security model in advance; therefore, it can effectively overcome the impact of uncertainty caused by DG access on DN security . Extensive experiments show the effectiveness of the proposed algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou B, Chen Q, Yang D (2018) On the power system large-scale blackout in Brazil. Power Gen Technol 39(2):97–105 Zhou B, Chen Q, Yang D (2018) On the power system large-scale blackout in Brazil. Power Gen Technol 39(2):97–105
2.
Zurück zum Zitat Quan L, Zhan H, Zhang Y, Xiao J, Peng P (2021) Adaptive current main protection scheme of distribution network accessed with multiple distributed generations. Power Syst Protect Control 49(8):63–69 Quan L, Zhan H, Zhang Y, Xiao J, Peng P (2021) Adaptive current main protection scheme of distribution network accessed with multiple distributed generations. Power Syst Protect Control 49(8):63–69
3.
Zurück zum Zitat Barra PHA, Coury DV, Fernandes RAS (2020) A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renew Sustain Energy Rev 118:109524CrossRef Barra PHA, Coury DV, Fernandes RAS (2020) A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renew Sustain Energy Rev 118:109524CrossRef
4.
Zurück zum Zitat Usama M et al (2021) A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks. IEEE Access 9:35740–35765CrossRef Usama M et al (2021) A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks. IEEE Access 9:35740–35765CrossRef
5.
Zurück zum Zitat Hussain N, Nasir M, Vasquez JC, Guerrero JM (2020) Recent developments and challenges on AC microgrids fault detection and protection systems–a review. Energies 13(9):2149CrossRef Hussain N, Nasir M, Vasquez JC, Guerrero JM (2020) Recent developments and challenges on AC microgrids fault detection and protection systems–a review. Energies 13(9):2149CrossRef
6.
Zurück zum Zitat Kiliçkiran HC, Şengör İ, Akdemir H, Kekezoğlu B, Erdinç O, Paterakis NG (2018) Power system protection with digital overcurrent relays: a review of non-standard characteristics. Electr Power Syst Res 164:89–102CrossRef Kiliçkiran HC, Şengör İ, Akdemir H, Kekezoğlu B, Erdinç O, Paterakis NG (2018) Power system protection with digital overcurrent relays: a review of non-standard characteristics. Electr Power Syst Res 164:89–102CrossRef
7.
Zurück zum Zitat Pereira K, Pereira BR, Contreras J, Mantovani JRS (2018) A multiobjective optimization technique to develop protection systems of distribution networks with distributed generation. IEEE Trans Power Syst 33(6):7064–7075CrossRef Pereira K, Pereira BR, Contreras J, Mantovani JRS (2018) A multiobjective optimization technique to develop protection systems of distribution networks with distributed generation. IEEE Trans Power Syst 33(6):7064–7075CrossRef
8.
Zurück zum Zitat Atteya AI, El Zonkoly AM, Ashour HA (2017) Adaptive protection scheme for optimally coordinated relay setting using modified PSO algorithm. J Power Technol 97(5):463–469 Atteya AI, El Zonkoly AM, Ashour HA (2017) Adaptive protection scheme for optimally coordinated relay setting using modified PSO algorithm. J Power Technol 97(5):463–469
9.
Zurück zum Zitat MN Alam, S Chakrabarti, A Sharma, SC Srivastava, (2019) An adaptive protection scheme for AC microgrids using μPMU based topology processor. In: 2019 IEEE international conference on environment and electrical engineering and 2019 IEEE industrial and commercial power systems Europe (EEEIC / I&CPS Europe), pp 1–6 MN Alam, S Chakrabarti, A Sharma, SC Srivastava, (2019) An adaptive protection scheme for AC microgrids using μPMU based topology processor. In: 2019 IEEE international conference on environment and electrical engineering and 2019 IEEE industrial and commercial power systems Europe (EEEIC / I&CPS Europe), pp 1–6
10.
Zurück zum Zitat Shabani M, Karimi A (2018) A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties. Int Trans Electr Energy Syst 28(5):e2532CrossRef Shabani M, Karimi A (2018) A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties. Int Trans Electr Energy Syst 28(5):e2532CrossRef
11.
Zurück zum Zitat Darabi A, Bagheri M, Gharehpetian GB (2020) Highly sensitive micro-grid protection using overcurrent relays with a novel relay characteristic. IET Renew Power Gener 14(7):1201–1209CrossRef Darabi A, Bagheri M, Gharehpetian GB (2020) Highly sensitive micro-grid protection using overcurrent relays with a novel relay characteristic. IET Renew Power Gener 14(7):1201–1209CrossRef
12.
Zurück zum Zitat Lin H, Sun K, Tan Z, Liu C, Guerrero JM, Vasquez JC (2019) Adaptive protection combined with machine learning for microgrids. IET Gener, Transm Distrib 14(7):770–779CrossRef Lin H, Sun K, Tan Z, Liu C, Guerrero JM, Vasquez JC (2019) Adaptive protection combined with machine learning for microgrids. IET Gener, Transm Distrib 14(7):770–779CrossRef
13.
Zurück zum Zitat Karupiah S, Hussain M, Musirin I, Rahim S (2019) Prediction of overcurrent relay miscoordination time using urtificial neural network. IndonesianJ Electr Eng Comput Sci 14(1):319–326CrossRef Karupiah S, Hussain M, Musirin I, Rahim S (2019) Prediction of overcurrent relay miscoordination time using urtificial neural network. IndonesianJ Electr Eng Comput Sci 14(1):319–326CrossRef
14.
Zurück zum Zitat DS Kumar, D Srinivasan, (2018) A numerical protection strategy for medium-voltage distribution systems. In: Proceedings IEEE Innovation Smart Grid Technology Asia (ISGT Asia), pp 1056–1061 DS Kumar, D Srinivasan, (2018) A numerical protection strategy for medium-voltage distribution systems. In: Proceedings IEEE Innovation Smart Grid Technology Asia (ISGT Asia), pp 1056–1061
15.
Zurück zum Zitat MJ Daryani, AE Karkevandi, O Usta, (2019) A hybrid approach for microgrid protection system based on neural network and fuzzy logic. In: Proceedings IEEE PES innovation smart grid technology Europe (ISGT-Europe), pp 1–5 MJ Daryani, AE Karkevandi, O Usta, (2019) A hybrid approach for microgrid protection system based on neural network and fuzzy logic. In: Proceedings IEEE PES innovation smart grid technology Europe (ISGT-Europe), pp 1–5
16.
Zurück zum Zitat Glavic M (2019) (Deep) Reinforcement learning for electric power system control and related problems: a short review and perspectives. Annu Rev Control 48:22–35MathSciNetCrossRef Glavic M (2019) (Deep) Reinforcement learning for electric power system control and related problems: a short review and perspectives. Annu Rev Control 48:22–35MathSciNetCrossRef
17.
Zurück zum Zitat Zhang Z, Zhang D, Qiu RC (2020) Deep reinforcement learning for power system applications: an overview. CSEE J Power Energy Syst 6(1):213–225 Zhang Z, Zhang D, Qiu RC (2020) Deep reinforcement learning for power system applications: an overview. CSEE J Power Energy Syst 6(1):213–225
18.
Zurück zum Zitat Mocanu E, Mocanu DC, Nguyen PH, Liotta A, Webber ME, Gibescu M, Slootweg JG (2019) On-line building energy optimization using deep reinforcement learning. IEEE Trans Smart Grid 10(4):3698–3708CrossRef Mocanu E, Mocanu DC, Nguyen PH, Liotta A, Webber ME, Gibescu M, Slootweg JG (2019) On-line building energy optimization using deep reinforcement learning. IEEE Trans Smart Grid 10(4):3698–3708CrossRef
19.
Zurück zum Zitat Wan ZQ, Li HP, He HB, Prokhorov D (2019) Model-free real-time EV charging scheduling based on deep reinforcement learning. IEEE Trans Smart Grid 10(5):5246–5257CrossRef Wan ZQ, Li HP, He HB, Prokhorov D (2019) Model-free real-time EV charging scheduling based on deep reinforcement learning. IEEE Trans Smart Grid 10(5):5246–5257CrossRef
20.
Zurück zum Zitat Qi XW, Luo YD, Wu GY, Boriboonsomsin K, Barth M (2019) Deep reinforcement learning enabled self-learning control for energy efficient driving. Trans Res Part C: Emerg Technol 99:67–81CrossRef Qi XW, Luo YD, Wu GY, Boriboonsomsin K, Barth M (2019) Deep reinforcement learning enabled self-learning control for energy efficient driving. Trans Res Part C: Emerg Technol 99:67–81CrossRef
21.
Zurück zum Zitat Nguyen ND, Nguyen TT, Vamplew P et al (2021) A prioritized objective actor-critic method for deep reinforcement learning. Neural Comput Applic 33:10335–10349CrossRef Nguyen ND, Nguyen TT, Vamplew P et al (2021) A prioritized objective actor-critic method for deep reinforcement learning. Neural Comput Applic 33:10335–10349CrossRef
22.
Zurück zum Zitat Chen T, Su WC (2018) Indirect customer-to-customer energy trading with reinforcement learning. IEEE Trans Smart Grid 10(4):4338–4348CrossRef Chen T, Su WC (2018) Indirect customer-to-customer energy trading with reinforcement learning. IEEE Trans Smart Grid 10(4):4338–4348CrossRef
23.
Zurück zum Zitat Xu HC, Sun HB, Nikovski D, Kitamura S, Mori K, Hashimoto H (2019) Deep reinforcement learning for joint bidding and pricing of load serving entity. IEEE Trans Smart Grid 10(6):6366–6375CrossRef Xu HC, Sun HB, Nikovski D, Kitamura S, Mori K, Hashimoto H (2019) Deep reinforcement learning for joint bidding and pricing of load serving entity. IEEE Trans Smart Grid 10(6):6366–6375CrossRef
24.
Zurück zum Zitat Lu RZ, Hong SH (2019) Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl Energy 236:937–949CrossRef Lu RZ, Hong SH (2019) Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl Energy 236:937–949CrossRef
25.
Zurück zum Zitat Ye H, Luo Z (2020) Deep ranking based cost-sensitive multi-label learning for distant supervision relation extraction. Inf Process Manag 57(6):102096CrossRef Ye H, Luo Z (2020) Deep ranking based cost-sensitive multi-label learning for distant supervision relation extraction. Inf Process Manag 57(6):102096CrossRef
26.
Zurück zum Zitat Remani T, Jasmin EA, ImthiasAhamed TP (2019) Residential load scheduling with renewable generation in the smart grid: a reinforcement learning approach. IEEE Syst J 13(3):3283–3294CrossRef Remani T, Jasmin EA, ImthiasAhamed TP (2019) Residential load scheduling with renewable generation in the smart grid: a reinforcement learning approach. IEEE Syst J 13(3):3283–3294CrossRef
27.
Zurück zum Zitat Zhang XS, Li Q, Yu T, Yang B (2018) Consensus transfer Q-learning for decentralized generation command dispatch based on virtual generation tribe. IEEE Trans Smart Grid 9(3):2152–2165 Zhang XS, Li Q, Yu T, Yang B (2018) Consensus transfer Q-learning for decentralized generation command dispatch based on virtual generation tribe. IEEE Trans Smart Grid 9(3):2152–2165
28.
Zurück zum Zitat Saenz-Aguirre A, Zulueta E, Fernandez-Gamiz U, Lozano J, Lopez-Guede JM (2019) Artificial neural network based reinforcement learning for wind turbine yaw control. Energies 12(3):436CrossRef Saenz-Aguirre A, Zulueta E, Fernandez-Gamiz U, Lozano J, Lopez-Guede JM (2019) Artificial neural network based reinforcement learning for wind turbine yaw control. Energies 12(3):436CrossRef
29.
Zurück zum Zitat Claessens BJ, Vrancx P, Ruelens F (2018) Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control. IEEE Trans Smart Grid 9(4):3259–3269CrossRef Claessens BJ, Vrancx P, Ruelens F (2018) Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control. IEEE Trans Smart Grid 9(4):3259–3269CrossRef
30.
Zurück zum Zitat HC Kilikiran, B Kekezoglu, GN Paterakis, (2018) Reinforcement learning for optimal protection coordination. In: 2018 International conference on smart energy systems and technologies (SEST), Sevilla, pp 1–6 HC Kilikiran, B Kekezoglu, GN Paterakis, (2018) Reinforcement learning for optimal protection coordination. In: 2018 International conference on smart energy systems and technologies (SEST), Sevilla, pp 1–6
31.
Zurück zum Zitat D Wu, X Zheng, D Kalathil, L Xie, (2019) Nested reinforcement learning based control for protective relays in power distribution systems. In: 2019 IEEE 58th conference on decision and control (CDC), pp 1925–1930 D Wu, X Zheng, D Kalathil, L Xie, (2019) Nested reinforcement learning based control for protective relays in power distribution systems. In: 2019 IEEE 58th conference on decision and control (CDC), pp 1925–1930
32.
Zurück zum Zitat Zhang J, Wang G, Yue S, Liu J, Yao X (2020) Multi-agent system application in accordance with game theory in bi-directional coordination network model. J Syst Eng Electron 31(2):279–289CrossRef Zhang J, Wang G, Yue S, Liu J, Yao X (2020) Multi-agent system application in accordance with game theory in bi-directional coordination network model. J Syst Eng Electron 31(2):279–289CrossRef
33.
Zurück zum Zitat Kim B, Park J, Park S, Kang S (2010) Impedance learning for robotic contact tasks using natural actor-critic algorithm. IEEE Trans Syst, Man, Cybern Part B (Cybernetics) 40(2):433–443CrossRef Kim B, Park J, Park S, Kang S (2010) Impedance learning for robotic contact tasks using natural actor-critic algorithm. IEEE Trans Syst, Man, Cybern Part B (Cybernetics) 40(2):433–443CrossRef
34.
Zurück zum Zitat Dong L et al (2021) Optimal dispatch of combined heat and power system based on multi-agent deep reinforcement learning. Power Syst Technol 45(12):4729–4738 Dong L et al (2021) Optimal dispatch of combined heat and power system based on multi-agent deep reinforcement learning. Power Syst Technol 45(12):4729–4738
35.
Zurück zum Zitat J Zhang, T Pu, Y Li, X Wang, X Zhou, (2021) Research on optimal dispatch strategy of distributed generators based on multi-agent deep reinforcement learning. Power Syst Technol, pp 1–10 J Zhang, T Pu, Y Li, X Wang, X Zhou, (2021) Research on optimal dispatch strategy of distributed generators based on multi-agent deep reinforcement learning. Power Syst Technol, pp 1–10
36.
Zurück zum Zitat Schneider KP et al (2018) Analytic considerations and design basis for the IEEE distribution test feeders. IEEE Trans Power Syst 33:3181–3188CrossRef Schneider KP et al (2018) Analytic considerations and design basis for the IEEE distribution test feeders. IEEE Trans Power Syst 33:3181–3188CrossRef
Metadaten
Titel
A multiagent deep deterministic policy gradient-based distributed protection method for distribution network
verfasst von
Peng Zeng
Shijie Cui
Chunhe Song
Zhongfeng Wang
Guangye Li
Publikationsdatum
07.02.2022
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3/2023
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-06982-3

Weitere Artikel der Ausgabe 3/2023

Neural Computing and Applications 3/2023 Zur Ausgabe

S.I.: Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIOT 2021)

Risk decision analysis of commercial insurance based on neural network algorithm

Premium Partner