Skip to main content
Erschienen in: Neural Computing and Applications 20/2022

05.06.2022 | Original Article

Multivariable models including artificial neural network and M5P-tree to forecast the stress at the failure of alkali-activated concrete at ambient curing condition and various mixture proportions

verfasst von: Hemn Unis Ahmed, Ahmed S. Mohammed, Azad A. Mohammed

Erschienen in: Neural Computing and Applications | Ausgabe 20/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alkali-activated concrete (AAC) has emerged as a sustainable construction material due to the environmental issues associated with cement production. This type of concrete is cementless concrete that employs industrial or agro by-product ashes like fly ash (FA) and ground granulated blast furnace slag (GGBFS) in their mixture proportions as the primary binders instead of conventional Portland cement. All concrete composites, including AAC, rely on compressive strength. However, the 28-day compressive strength of concrete is critical in structural design. Therefore, developing an authoritative model for estimating AAC compressive strength saves time, energy, and money while guiding the construction and formwork removal. This study used artificial neural network (ANN), M5P-tree, linear regression, non-linear regression, and multi-logistic regression models to predict blended GGBFS/FA-based AAC’s compressive strength at different mixture proportions curing ages. A comprehensive dataset consists of 469 samples collected in several academic research studies and analyzed to develop the models. In the modeling process, for the first time, twelve effective variable parameters on the compressive strength of the AAC, including the alkaline solution-to-binder ratio, FA content, SiO2/Al2O3 of FA, GGBFS content, SiO2/CaO of GGBFS, fine and coarse aggregate content, NaOH and Na2SiO3 content, Na2SiO3/NaOH ratio, molarity and age of concrete specimens were considered as the modeling input parameters. Various statistical assessment tools such as RMSE, MAE, SI, OBJ value, and R2 were used to evaluate the efficiency of the developed models. The results indicated that the ANN model better predicted GGBFS/FA-based AAC mixtures’ compressive strength than the other models. Moreover, the sensitivity analysis demonstrated that the alkaline liquid-to-binder ratio, NaOH content, and age of concrete specimens were those parameters that significantly influenced the compressive strength of the AAC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Guo X, Shi H, Dick WA (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concr Compos 32(2):142–147 Guo X, Shi H, Dick WA (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concr Compos 32(2):142–147
4.
Zurück zum Zitat Mejeoumov GG (2007) Improved cement quality and grinding efficiency by means of closed mill circuit modeling. Texas A&M University Mejeoumov GG (2007) Improved cement quality and grinding efficiency by means of closed mill circuit modeling. Texas A&M University
5.
Zurück zum Zitat Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials. Cem Concr Res 78:110–125 Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials. Cem Concr Res 78:110–125
7.
Zurück zum Zitat Weil M, Dombrowski K, Buchwald A (2009) Life-cycle analysis of geopolymer. In: Geopolymers. Woodhead Publishing, pp 194–210 Weil M, Dombrowski K, Buchwald A (2009) Life-cycle analysis of geopolymer. In: Geopolymers. Woodhead Publishing, pp 194–210
8.
Zurück zum Zitat Faraj RH, Ahmed HU, Sherwani AFH (2022) Fresh and mechanical properties of concrete made with recycled plastic aggregates. In: Handbook of sustainable concrete and industrial waste management. Woodhead Publishing, pp 167–185 Faraj RH, Ahmed HU, Sherwani AFH (2022) Fresh and mechanical properties of concrete made with recycled plastic aggregates. In: Handbook of sustainable concrete and industrial waste management. Woodhead Publishing, pp 167–185
9.
Zurück zum Zitat Boiny HU, Alshkane YM, Rafiq SK (2016) Mechanical properties of cement mortar by using polyethylene terephthalate fibers. In: 5th National and 1st International conference on modern materials and structures in civil engineering, Iran (Islamic Republic of Iran) Boiny HU, Alshkane YM, Rafiq SK (2016) Mechanical properties of cement mortar by using polyethylene terephthalate fibers. In: 5th National and 1st International conference on modern materials and structures in civil engineering, Iran (Islamic Republic of Iran)
10.
Zurück zum Zitat Alshkane YM, Rafiq SK, Boiny HU (2017) Correlation between destructive and non-destructive tests on the mechanical properties of different cement mortar mixtures incorporating polyethylene terephthalate fibers. Sulaimania J Eng Sci 4(5):67–73 Alshkane YM, Rafiq SK, Boiny HU (2017) Correlation between destructive and non-destructive tests on the mechanical properties of different cement mortar mixtures incorporating polyethylene terephthalate fibers. Sulaimania J Eng Sci 4(5):67–73
13.
Zurück zum Zitat Davidovits J (2008) Geoplolymer chemistry and application. institute Geopolymer Saint-Quentin Davidovits J (2008) Geoplolymer chemistry and application. institute Geopolymer Saint-Quentin
14.
Zurück zum Zitat Mohammed AA, Ahmed HU, Mosavi A (2021) Survey of mechanical properties of geopolymer concrete: a comprehensive review and data analysis. Materials 14(16):4690 Mohammed AA, Ahmed HU, Mosavi A (2021) Survey of mechanical properties of geopolymer concrete: a comprehensive review and data analysis. Materials 14(16):4690
15.
Zurück zum Zitat Sumesh M, Alengaram UJ, Jumaat MZ, Mo KH, Alnahhal MF (2017) Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–a review. Constr Build Mater 148:62–84 Sumesh M, Alengaram UJ, Jumaat MZ, Mo KH, Alnahhal MF (2017) Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–a review. Constr Build Mater 148:62–84
16.
Zurück zum Zitat Sharif HH (2021) Fresh and mechanical characteristics of eco-efficient geopolymer concrete incorporating nano-silica: an overview. Kurdistan J Appl Res, 64–74 Sharif HH (2021) Fresh and mechanical characteristics of eco-efficient geopolymer concrete incorporating nano-silica: an overview. Kurdistan J Appl Res, 64–74
17.
Zurück zum Zitat Ahmed HU, Mohammed AA, Rafiq S, Mohammed AS, Mosavi A, Sor NH, Qaidi S (2021) Compressive strength of sustainable geopolymer concrete composites: a state-of-the-art review. Sustainability 13(24):13502 Ahmed HU, Mohammed AA, Rafiq S, Mohammed AS, Mosavi A, Sor NH, Qaidi S (2021) Compressive strength of sustainable geopolymer concrete composites: a state-of-the-art review. Sustainability 13(24):13502
18.
Zurück zum Zitat Yildirim G, Sahmaran M, Ahmed HU (2015) Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites. J Mater Civ Eng 27(6):04014187 Yildirim G, Sahmaran M, Ahmed HU (2015) Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites. J Mater Civ Eng 27(6):04014187
19.
Zurück zum Zitat Bakharev T (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35(6):1224–1232 Bakharev T (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35(6):1224–1232
20.
Zurück zum Zitat Fang G, Ho WK, Tu W, Zhang M (2018) Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr Build Mater 172:476–487 Fang G, Ho WK, Tu W, Zhang M (2018) Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr Build Mater 172:476–487
21.
Zurück zum Zitat Kumar S, Kumar R, Mehrotra SP (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 45(3):607–615 Kumar S, Kumar R, Mehrotra SP (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 45(3):607–615
22.
Zurück zum Zitat Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 1980–2015(62):32–39 Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 1980–2015(62):32–39
23.
Zurück zum Zitat Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171 Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171
24.
Zurück zum Zitat Saha S, Rajasekaran C (2017) Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr Build Mater 146:615–620 Saha S, Rajasekaran C (2017) Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr Build Mater 146:615–620
25.
Zurück zum Zitat Lee NK, Lee HK (2013) Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater 47:1201–1209 Lee NK, Lee HK (2013) Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater 47:1201–1209
26.
Zurück zum Zitat Phoo-ngernkham T, Maegawa A, Mishima N, Hatanaka S, Chindaprasirt P (2015) Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Constr Build Mater 91:1–8 Phoo-ngernkham T, Maegawa A, Mishima N, Hatanaka S, Chindaprasirt P (2015) Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Constr Build Mater 91:1–8
27.
Zurück zum Zitat Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JS (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933 Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JS (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933
28.
Zurück zum Zitat Ravitheja A, Kumar NK (2019) A study on the effect of nano clay and GGBS on the strength properties of fly ash based geopolymers. Mater Today Proc 19:273–276 Ravitheja A, Kumar NK (2019) A study on the effect of nano clay and GGBS on the strength properties of fly ash based geopolymers. Mater Today Proc 19:273–276
29.
Zurück zum Zitat Neville AM, Brooks JJ (2010) Concrete technology Neville AM, Brooks JJ (2010) Concrete technology
30.
Zurück zum Zitat ASTM C39/C39M (2017) Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA, USA ASTM C39/C39M (2017) Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA, USA
31.
Zurück zum Zitat The European Standard BS EN12390-3 (2009) Testing on hardned concrete:part-3: compressive strength of test specimens The European Standard BS EN12390-3 (2009) Testing on hardned concrete:part-3: compressive strength of test specimens
32.
Zurück zum Zitat Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement Concr Compos 55:205–214 Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement Concr Compos 55:205–214
33.
Zurück zum Zitat Nath P, Sarker PK (2017) Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater 130:22–31 Nath P, Sarker PK (2017) Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater 130:22–31
34.
Zurück zum Zitat De Vargas AS, Dal Molin DC, Vilela AC, Da Silva FJ, Pavao B, Veit H (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cement Concr Compos 33(6):653–660 De Vargas AS, Dal Molin DC, Vilela AC, Da Silva FJ, Pavao B, Veit H (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cement Concr Compos 33(6):653–660
35.
Zurück zum Zitat Topark-Ngarm P, Chindaprasirt P, Sata V (2015) Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J Mater Civ Eng 27(7):04014198 Topark-Ngarm P, Chindaprasirt P, Sata V (2015) Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J Mater Civ Eng 27(7):04014198
36.
Zurück zum Zitat Vijai K, Kumutha R, Vishnuram BG (2010) Effect of types of curing on strength of geopolymer concrete. Int J Phys Sci 5(9):1419–1423 Vijai K, Kumutha R, Vishnuram BG (2010) Effect of types of curing on strength of geopolymer concrete. Int J Phys Sci 5(9):1419–1423
37.
Zurück zum Zitat Muhammad N, Baharom S, Ghazali NAM, Alias NA (2019) Effect of heat curing temperatures on fly ash-based geopolymer concrete. Int J Eng Technol 8:15–19 Muhammad N, Baharom S, Ghazali NAM, Alias NA (2019) Effect of heat curing temperatures on fly ash-based geopolymer concrete. Int J Eng Technol 8:15–19
38.
Zurück zum Zitat Ibrahim M, Johari MAM, Maslehuddin M, Rahman MK (2018) Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr Build Mater 173:573–585 Ibrahim M, Johari MAM, Maslehuddin M, Rahman MK (2018) Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr Build Mater 173:573–585
39.
Zurück zum Zitat Sarker PK (2011) Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Mater Struct 44(5):1021–1030 Sarker PK (2011) Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Mater Struct 44(5):1021–1030
40.
Zurück zum Zitat Wallah SE (2010) Creep behaviour of fly ash-based geopolymer concrete. Civil Eng Dimens 12(2):73–78 Wallah SE (2010) Creep behaviour of fly ash-based geopolymer concrete. Civil Eng Dimens 12(2):73–78
41.
Zurück zum Zitat Olivia M, Sarker P, Nikraz H (2008) Water penetrability of low calcium fly ash geopolymer concrete. Proc ICCBT2008-A, 46:517–530 Olivia M, Sarker P, Nikraz H (2008) Water penetrability of low calcium fly ash geopolymer concrete. Proc ICCBT2008-A, 46:517–530
42.
Zurück zum Zitat Barbosa VF, MacKenzie KJ (2003) Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull 38(2):319–331 Barbosa VF, MacKenzie KJ (2003) Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull 38(2):319–331
43.
Zurück zum Zitat Van Chanh N, Trung BD, Van Tuan D (2008) Recent research geopolymer concrete. In: The 3rd ACF international conference-ACF/VCA, Vietnam, vol 18, pp 235–241 Van Chanh N, Trung BD, Van Tuan D (2008) Recent research geopolymer concrete. In: The 3rd ACF international conference-ACF/VCA, Vietnam, vol 18, pp 235–241
44.
Zurück zum Zitat Jindal BB, Parveen, Singhal D, Goyal A (2017) Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete. Trans Indian Ceram Soc 76(4):258–265 Jindal BB, Parveen, Singhal D, Goyal A (2017) Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete. Trans Indian Ceram Soc 76(4):258–265
45.
Zurück zum Zitat Embong R, Kusbiantoro A, Shafiq N, Nuruddin MF (2016) Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. J Clean Prod 112:816–822 Embong R, Kusbiantoro A, Shafiq N, Nuruddin MF (2016) Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. J Clean Prod 112:816–822
46.
Zurück zum Zitat Albitar M, Visintin P, Ali MM, Drechsler M (2015) Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE J Civ Eng 19(5):1445–1455 Albitar M, Visintin P, Ali MM, Drechsler M (2015) Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE J Civ Eng 19(5):1445–1455
47.
Zurück zum Zitat Jaydeep S, Chakravarthy BJ (2013) study on fly ash based geo-polymer concrete using admixtures. Int J Eng Trends Technol 4(10):4614–4617 Jaydeep S, Chakravarthy BJ (2013) study on fly ash based geo-polymer concrete using admixtures. Int J Eng Trends Technol 4(10):4614–4617
48.
Zurück zum Zitat Golafshani EM, Behnood A, Arashpour M (2020) Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer. Constr Build Mater 232:117266 Golafshani EM, Behnood A, Arashpour M (2020) Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer. Constr Build Mater 232:117266
49.
Zurück zum Zitat George UA, Elvis MM (2019) Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network. SN Appl Sci 1(11):1514 George UA, Elvis MM (2019) Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network. SN Appl Sci 1(11):1514
50.
Zurück zum Zitat Mehdipour V, Stevenson DS, Memarianfard M, Sihag P (2018) Comparing different methods for statistical modeling of particulate matter in Tehran Iran. Air Qual Atmos Health 11(10):1155–1165 Mehdipour V, Stevenson DS, Memarianfard M, Sihag P (2018) Comparing different methods for statistical modeling of particulate matter in Tehran Iran. Air Qual Atmos Health 11(10):1155–1165
51.
Zurück zum Zitat Sihag P, Jain P, Kumar M (2018) Modelling of impact of water quality on recharging rate of storm water filter system using various kernel function based regression. Model Earth Syst Environ 4(1):61–68 Sihag P, Jain P, Kumar M (2018) Modelling of impact of water quality on recharging rate of storm water filter system using various kernel function based regression. Model Earth Syst Environ 4(1):61–68
53.
Zurück zum Zitat Velay-Lizancos M, Perez-Ordoñez JL, Martinez-Lage I, Vazquez-Burgo P (2017) Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature. Constr Build Mater 144:195–206 Velay-Lizancos M, Perez-Ordoñez JL, Martinez-Lage I, Vazquez-Burgo P (2017) Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature. Constr Build Mater 144:195–206
54.
Zurück zum Zitat Gholampour A, Mansouri I, Kisi O, Ozbakkaloglu T (2020) Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Comput Appl 32(1):295–308 Gholampour A, Mansouri I, Kisi O, Ozbakkaloglu T (2020) Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Comput Appl 32(1):295–308
55.
Zurück zum Zitat Behnood A, Olek J, Glinicki MA (2015) Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm. Constr Build Mater 94:137–147 Behnood A, Olek J, Glinicki MA (2015) Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm. Constr Build Mater 94:137–147
56.
Zurück zum Zitat Ahmed HU, Mohammed AS, Mohammed AA, Faraj RH (2021) Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE 16(6):e0253006 Ahmed HU, Mohammed AS, Mohammed AA, Faraj RH (2021) Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE 16(6):e0253006
58.
Zurück zum Zitat Shahmansouri AA, Yazdani M, Ghanbari S, Bengar HA, Jafari A, Ghatte HF (2020) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697 Shahmansouri AA, Yazdani M, Ghanbari S, Bengar HA, Jafari A, Ghatte HF (2020) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697
59.
Zurück zum Zitat Behnood A, Verian KP, Gharehveran MM (2015) Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength. Constr Build Mater 98:519–529 Behnood A, Verian KP, Gharehveran MM (2015) Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength. Constr Build Mater 98:519–529
61.
Zurück zum Zitat Singh B, Rahman MR, Paswan R, Bhattacharyya SK (2016) Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr Build Mater 118:171–179 Singh B, Rahman MR, Paswan R, Bhattacharyya SK (2016) Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr Build Mater 118:171–179
62.
Zurück zum Zitat Ding Y, Shi CJ, Li N (2018) Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Constr Build Mater 190:787–795 Ding Y, Shi CJ, Li N (2018) Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Constr Build Mater 190:787–795
63.
Zurück zum Zitat Farhan NA, Sheikh MN, Hadi MN (2019) Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr Build Mater 196:26–42 Farhan NA, Sheikh MN, Hadi MN (2019) Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr Build Mater 196:26–42
65.
Zurück zum Zitat Nagajothi S, Elavenil S (2020) Effect of GGBS addition on reactivity and microstructure properties of ambient cured fly ash based geopolymer concrete. Silicon, 1–10 Nagajothi S, Elavenil S (2020) Effect of GGBS addition on reactivity and microstructure properties of ambient cured fly ash based geopolymer concrete. Silicon, 1–10
66.
Zurück zum Zitat Singhal D, Junaid MT, Jindal BB, Mehta A (2018) Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr Build Mater 180:298–307 Singhal D, Junaid MT, Jindal BB, Mehta A (2018) Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr Build Mater 180:298–307
67.
Zurück zum Zitat Abhilash P, Sashidhar C, Reddy IR (2016) Strength properties of fly ash and GGBS based geo-polymer concrete. Int J ChemTech Res, ISSN, 0974–4290 Abhilash P, Sashidhar C, Reddy IR (2016) Strength properties of fly ash and GGBS based geo-polymer concrete. Int J ChemTech Res, ISSN, 0974–4290
68.
Zurück zum Zitat Ramujee K, PothaRaju M (2017) Mechanical properties of geopolymer concrete composites. Mater Today Proc 4(2):2937–2945 Ramujee K, PothaRaju M (2017) Mechanical properties of geopolymer concrete composites. Mater Today Proc 4(2):2937–2945
69.
Zurück zum Zitat Xie T, Ozbakkaloglu T (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 41(4):5945–5958 Xie T, Ozbakkaloglu T (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 41(4):5945–5958
70.
Zurück zum Zitat Jawahar JG, Mounika G (2016) Strength properties of fly ash and GGBS based geopolymer concrete. Asian J Civ Eng 17(1):127–135 Jawahar JG, Mounika G (2016) Strength properties of fly ash and GGBS based geopolymer concrete. Asian J Civ Eng 17(1):127–135
71.
Zurück zum Zitat Anıl NİŞ (2019) Compressive strength variation of alkali activated fly ash/slag concrete with different NaOH concentrations and sodium silicate to sodium hydroxide ratios. J Sustain Constr Mater Technol 4(2):351–360 Anıl NİŞ (2019) Compressive strength variation of alkali activated fly ash/slag concrete with different NaOH concentrations and sodium silicate to sodium hydroxide ratios. J Sustain Constr Mater Technol 4(2):351–360
72.
Zurück zum Zitat Chindaprasirt P, Chalee W (2014) Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr Build Mater 63:303–310 Chindaprasirt P, Chalee W (2014) Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr Build Mater 63:303–310
73.
Zurück zum Zitat Rafeet A, Vinai R, Soutsos M, Sha W (2017) Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Constr Build Mater 147:130–142 Rafeet A, Vinai R, Soutsos M, Sha W (2017) Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Constr Build Mater 147:130–142
74.
Zurück zum Zitat Shaikh FUA, Vimonsatit V (2015) Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures. Fire Mater 39(2):174–188 Shaikh FUA, Vimonsatit V (2015) Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures. Fire Mater 39(2):174–188
75.
Zurück zum Zitat Bhikshma V, Kumar TN (2014) Mechanical properties of flyash based geopolymer concrete with addition of GGBS. Sustain Solut Struct Eng Constr (SSEC), 451–456 Bhikshma V, Kumar TN (2014) Mechanical properties of flyash based geopolymer concrete with addition of GGBS. Sustain Solut Struct Eng Constr (SSEC), 451–456
76.
Zurück zum Zitat Çevik A, Alzeebaree R, Humur G, Niş A, Gülşan ME (2018) Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int 44(11):12253–12264 Çevik A, Alzeebaree R, Humur G, Niş A, Gülşan ME (2018) Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int 44(11):12253–12264
78.
Zurück zum Zitat Reddy MS, Dinakar P, Rao BH (2018) Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. J Build Eng 20:712–722 Reddy MS, Dinakar P, Rao BH (2018) Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. J Build Eng 20:712–722
79.
Zurück zum Zitat Bashir I, Kapoor K, Sood H (2017) An experimental investigation on the mechanical properties of geopolymer concrete. Int J Latest Res Sci Technol 6(3):33–36 Bashir I, Kapoor K, Sood H (2017) An experimental investigation on the mechanical properties of geopolymer concrete. Int J Latest Res Sci Technol 6(3):33–36
80.
Zurück zum Zitat Chithra KS, Binoy T, Harismitha A, Ananth RK, Deepa M (2021) A study on economic feasibility of fly ash and ground granulated blast furnace slag based geopolymer concrete. In: IOP conference series: materials science and engineering. IOP Publishing, 1114,(1): 012007 Chithra KS, Binoy T, Harismitha A, Ananth RK, Deepa M (2021) A study on economic feasibility of fly ash and ground granulated blast furnace slag based geopolymer concrete. In: IOP conference series: materials science and engineering. IOP Publishing, 1114,(1): 012007
81.
Zurück zum Zitat Hassan A, Arif M, Shariq M (2019) Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete. SN Appl Sci 1(12):1694 Hassan A, Arif M, Shariq M (2019) Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete. SN Appl Sci 1(12):1694
82.
Zurück zum Zitat Karthik A, Sudalaimani K, Kumar CV (2017) Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete. Constr Build Mater 149:338–349 Karthik A, Sudalaimani K, Kumar CV (2017) Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete. Constr Build Mater 149:338–349
83.
Zurück zum Zitat Vijai K, Kumutha R, Vishnuram BG (2011) Experimental investigations on mechanical properties of geopolymer concrete composites Vijai K, Kumutha R, Vishnuram BG (2011) Experimental investigations on mechanical properties of geopolymer concrete composites
84.
Zurück zum Zitat Partha SD, Pradip N, Prabir KS (2013) Strength and permeation properties of slag blended fly ash based geopolymer concrete. Adv Mater Res 651:168–173 Partha SD, Pradip N, Prabir KS (2013) Strength and permeation properties of slag blended fly ash based geopolymer concrete. Adv Mater Res 651:168–173
86.
Zurück zum Zitat Sivakumar A, Kishore R (2017) Evaluation of mechanical properties of fly ash and ggbs based geopolymer concrete. JETIR 4:1028–1033 Sivakumar A, Kishore R (2017) Evaluation of mechanical properties of fly ash and ggbs based geopolymer concrete. JETIR 4:1028–1033
87.
Zurück zum Zitat Krishnaraja AR, Sathishkumar NP, Kumar TS, Kumar PD (2014) Mechanical behaviour of geopolymer concrete under ambient curing. Int J Sci Eng Technol 3(2):130–132 Krishnaraja AR, Sathishkumar NP, Kumar TS, Kumar PD (2014) Mechanical behaviour of geopolymer concrete under ambient curing. Int J Sci Eng Technol 3(2):130–132
88.
Zurück zum Zitat Vignesh P, Vivek K (2015) An experimental investigation on strength parameters of flyash based geopolymer concrete with GGBS. Int Res J Eng Technol 2(2):135–142 Vignesh P, Vivek K (2015) An experimental investigation on strength parameters of flyash based geopolymer concrete with GGBS. Int Res J Eng Technol 2(2):135–142
89.
Zurück zum Zitat Raut U, Shalini A, Prabu B (2019) Strength of geopolymer concrete reinforced with basalt fibre. Int Res J Eng Technol 6:3811–3817 Raut U, Shalini A, Prabu B (2019) Strength of geopolymer concrete reinforced with basalt fibre. Int Res J Eng Technol 6:3811–3817
92.
Zurück zum Zitat Oyebisi S, Ede A, Olutoge F, Omole D (2020) Geopolymer concrete incorporating agro-industrial wastes: Effects on mechanical properties, microstructural behaviour and mineralogical phases. Constr Build Mater 256:119390 Oyebisi S, Ede A, Olutoge F, Omole D (2020) Geopolymer concrete incorporating agro-industrial wastes: Effects on mechanical properties, microstructural behaviour and mineralogical phases. Constr Build Mater 256:119390
93.
Zurück zum Zitat Wardhono A, Gunasekara C, Law DW, Setunge S (2017) Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Constr Build Mater 143:272–279 Wardhono A, Gunasekara C, Law DW, Setunge S (2017) Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Constr Build Mater 143:272–279
94.
Zurück zum Zitat Zhao R, Yuan Y, Cheng Z, Wen T, Li J, Li F, Ma ZJ (2019) Freeze-thaw resistance of class F fly ash-based geopolymer concrete. Constr Build Mater 222:474–483 Zhao R, Yuan Y, Cheng Z, Wen T, Li J, Li F, Ma ZJ (2019) Freeze-thaw resistance of class F fly ash-based geopolymer concrete. Constr Build Mater 222:474–483
95.
Zurück zum Zitat Mohammed A, Rafiq S, Sihag P, Kurda R, Mahmood W, Ghafor K, Sarwar W (2020) ANN, M5P-tree and non-linear regression approaches with statistical evaluations to predict the compressive strength of cement-based mortar modified with fly ash. J Market Res 9(6):12416–12427 Mohammed A, Rafiq S, Sihag P, Kurda R, Mahmood W, Ghafor K, Sarwar W (2020) ANN, M5P-tree and non-linear regression approaches with statistical evaluations to predict the compressive strength of cement-based mortar modified with fly ash. J Market Res 9(6):12416–12427
96.
Zurück zum Zitat FM Zain M, M Abd S (2009) Multiple regression model for compressive strength prediction of high performance concrete. J Appl Sci 9(1):155–160 FM Zain M, M Abd S (2009) Multiple regression model for compressive strength prediction of high performance concrete. J Appl Sci 9(1):155–160
97.
Zurück zum Zitat Mohammed A, Burhan L, Ghafor K, Sarwar W, Mahmood W (2021) Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers. Neural Comput Appl 33(13):7851–7873 Mohammed A, Burhan L, Ghafor K, Sarwar W, Mahmood W (2021) Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers. Neural Comput Appl 33(13):7851–7873
98.
Zurück zum Zitat Mohammed AS (2018) Vipulanandan models to predict the electrical resistivity, rheological properties and compressive stress-strain behavior of oil well cement modified with silica nanoparticles. Egypt J Pet 27(4):1265–1273 Mohammed AS (2018) Vipulanandan models to predict the electrical resistivity, rheological properties and compressive stress-strain behavior of oil well cement modified with silica nanoparticles. Egypt J Pet 27(4):1265–1273
99.
Zurück zum Zitat Quinlan Ross J (1992) Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, pp 343–348 Quinlan Ross J (1992) Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, pp 343–348
100.
Zurück zum Zitat Salih A, Rafiq S, Sihag P, Ghafor K, Mahmood W, Sarwar W (2021) Systematic multiscale models to predict the effect of high-volume fly ash on the maximum compression stress of cement-based mortar at various water/cement ratios and curing times. Measurement 171:108819 Salih A, Rafiq S, Sihag P, Ghafor K, Mahmood W, Sarwar W (2021) Systematic multiscale models to predict the effect of high-volume fly ash on the maximum compression stress of cement-based mortar at various water/cement ratios and curing times. Measurement 171:108819
101.
Zurück zum Zitat Mohammed A, Rafiq S, Sihag P, Mahmood W, Ghafor K, Sarwar W (2020) ANN, M5P-tree model, and non-linear regression approaches to predict the compression strength of cement-based mortar modified by quicklime at various water/cement ratios and curing times. Arab J Geosci 13(22):1–16 Mohammed A, Rafiq S, Sihag P, Mahmood W, Ghafor K, Sarwar W (2020) ANN, M5P-tree model, and non-linear regression approaches to predict the compression strength of cement-based mortar modified by quicklime at various water/cement ratios and curing times. Arab J Geosci 13(22):1–16
102.
Zurück zum Zitat Silva RV, De Brito J, Dhir RK (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater 65:201–217 Silva RV, De Brito J, Dhir RK (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater 65:201–217
103.
Zurück zum Zitat Li MF, Tang XP, Wu W, Liu HB (2013) General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers Manage 70:139–148 Li MF, Tang XP, Wu W, Liu HB (2013) General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers Manage 70:139–148
104.
Zurück zum Zitat Hardjito D, Wallah SE, Sumajouw DM, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. Mater J 101(6):467–472 Hardjito D, Wallah SE, Sumajouw DM, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. Mater J 101(6):467–472
105.
Zurück zum Zitat Mahmood W, Mohammed A, Ghafor K, Sarwar W (2021) Model technics to predict the impact of the particle size distribution (PSD) of the sand on the mechanical properties of the cement mortar modified with fly ash. Iranian J Sci Technol Trans Civil Eng 45(3):1657–1684 Mahmood W, Mohammed A, Ghafor K, Sarwar W (2021) Model technics to predict the impact of the particle size distribution (PSD) of the sand on the mechanical properties of the cement mortar modified with fly ash. Iranian J Sci Technol Trans Civil Eng 45(3):1657–1684
106.
Zurück zum Zitat Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica 19(5):1188–1194 Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica 19(5):1188–1194
107.
Zurück zum Zitat Al-Azzawi M, Yu T, Hadi MN (2018) Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement. Structures 14:262–272 Al-Azzawi M, Yu T, Hadi MN (2018) Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement. Structures 14:262–272
108.
Zurück zum Zitat Hu W, Nie Q, Huang B, Su A, Du Y, Shu X, He Q (2018) Mechanical property and microstructure characteristics of geopolymer stabilized aggregate base. Constr Build Mater 191:1120–1127 Hu W, Nie Q, Huang B, Su A, Du Y, Shu X, He Q (2018) Mechanical property and microstructure characteristics of geopolymer stabilized aggregate base. Constr Build Mater 191:1120–1127
109.
Zurück zum Zitat Sumajouw DMJ, Hardjito D, Wallah SE, Rangan BV (2007) Fly ash-based geopolymer concrete: study of slender reinforced columns. J Mater Sci 42(9):3124–3130 Sumajouw DMJ, Hardjito D, Wallah SE, Rangan BV (2007) Fly ash-based geopolymer concrete: study of slender reinforced columns. J Mater Sci 42(9):3124–3130
Metadaten
Titel
Multivariable models including artificial neural network and M5P-tree to forecast the stress at the failure of alkali-activated concrete at ambient curing condition and various mixture proportions
verfasst von
Hemn Unis Ahmed
Ahmed S. Mohammed
Azad A. Mohammed
Publikationsdatum
05.06.2022
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 20/2022
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07427-7

Weitere Artikel der Ausgabe 20/2022

Neural Computing and Applications 20/2022 Zur Ausgabe

Premium Partner