Skip to main content
Erschienen in: Microsystem Technologies 3-4/2007

01.02.2007 | Technical Paper

Method for polymer hot embossing process development

verfasst von: Proyag Datta, Jost Goettert

Erschienen in: Microsystem Technologies | Ausgabe 3-4/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molding technologies associated with fabricating macro scale polymer components such as injection molding and hot embossing have been adapted with considerable success for fabrication of polymer microparts. While the basic principles of the process remain the same, the precision with which the processing parameters need to be controlled especially in the case of molding high aspect ratio (HAR) polymer microparts into polymer sheets is much greater than in the case of macro scale parts. It is seen that the bulk effects of the mold insert fixture and molding machine have a dominant influence on the molding parameters and that differences in material parameters such as the glass transition temperature (T g) of polymer sheets are critical for the success and typically differ from sheet to sheet. This makes it very challenging to establish standard processing parameters for hot embossing of sheet polymers. In the course of this paper, a methodology for developing a hot embossing process for HAR microstructures based on known material properties and considering the cumulative behavior of mold, material, and machine will be presented. Using this method force–temperature–deflection curves were measured with the intent of fine tuning the hot embossing process. Tests were carried out for different materials using a dummy mold insert yielding information that could be directly transferred to the actual mold insert with minimum development time and no risk of damage to the actual microstructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Buser R (2002) MEMS devices for laboratory automation in the biomedical field. Mstnews 1/02:10–12 Buser R (2002) MEMS devices for laboratory automation in the biomedical field. Mstnews 1/02:10–12
Zurück zum Zitat Gerlach A et al (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst Technol 7(5–6):265–268CrossRef Gerlach A et al (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst Technol 7(5–6):265–268CrossRef
Zurück zum Zitat Heckele M, Schomburg K (2004) Review on micro molding of thermoplastic polymers. J Micromach Microeng, p 14 Heckele M, Schomburg K (2004) Review on micro molding of thermoplastic polymers. J Micromach Microeng, p 14
Zurück zum Zitat Heyderman LJ et al (2001) Nanofabrication using hot embossing lithography and electroforming. Microelectron Eng 57–8:375–380CrossRef Heyderman LJ et al (2001) Nanofabrication using hot embossing lithography and electroforming. Microelectron Eng 57–8:375–380CrossRef
Zurück zum Zitat Hoeper R, Menz A (2005) Manufacturing of microfluidic devices in silicon and plastics by deep reactive ion etching. Mstnews 2/05:40–41 Hoeper R, Menz A (2005) Manufacturing of microfluidic devices in silicon and plastics by deep reactive ion etching. Mstnews 2/05:40–41
Zurück zum Zitat Juang YJ, Lee LJ, Koelling KW (2002a) Hot embossing in microfabrication. Part II: Rheological characterization and process analysis. Polymer Eng Sci 42(3):551–566CrossRef Juang YJ, Lee LJ, Koelling KW (2002a) Hot embossing in microfabrication. Part II: Rheological characterization and process analysis. Polymer Eng Sci 42(3):551–566CrossRef
Zurück zum Zitat Juang YJ, Lee LJ, Koelling KW (2002b) Hot embossing in microfabrication. Part I: Experimental. Polymer Eng Sci 42(3):539–550CrossRef Juang YJ, Lee LJ, Koelling KW (2002b) Hot embossing in microfabrication. Part I: Experimental. Polymer Eng Sci 42(3):539–550CrossRef
Zurück zum Zitat Kricka LJ et al (2002) Fabrication of plastic microchips by hot embossing. Lab Chip 2(1):1–4CrossRefPubMed Kricka LJ et al (2002) Fabrication of plastic microchips by hot embossing. Lab Chip 2(1):1–4CrossRefPubMed
Zurück zum Zitat Lee GB et al (2001) Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens Actuators B Chem 75(1–2):142–148CrossRef Lee GB et al (2001) Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens Actuators B Chem 75(1–2):142–148CrossRef
Zurück zum Zitat Liu X, Bejat Y, Murphy MC, Nikitopoulos N, Soper SA (2004) PCR in a continuous flow polymer-based microdevice. Part 1: Theoretical considerations, Part 2: Fabrication and applications. JMEMS (submitted) Liu X, Bejat Y, Murphy MC, Nikitopoulos N, Soper SA (2004) PCR in a continuous flow polymer-based microdevice. Part 1: Theoretical considerations, Part 2: Fabrication and applications. JMEMS (submitted)
Zurück zum Zitat MacDermott CP, Shenoy AV (1997) Selecting thermoplastics for engineering applications, 2nd edn. Marcel Dekker, New York MacDermott CP, Shenoy AV (1997) Selecting thermoplastics for engineering applications, 2nd edn. Marcel Dekker, New York
Zurück zum Zitat Roetting O et al (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36CrossRef Roetting O et al (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36CrossRef
Zurück zum Zitat Schift H et al (2001) Pattern formation in hot embossing of thin polymer films. Nanotechnology 12(2):173–177CrossRef Schift H et al (2001) Pattern formation in hot embossing of thin polymer films. Nanotechnology 12(2):173–177CrossRef
Zurück zum Zitat Schift H et al (2000) Nanoreplication in polymers using hot embossing and injection molding. Microelectron Eng 53(1–4):171–174CrossRef Schift H et al (2000) Nanoreplication in polymers using hot embossing and injection molding. Microelectron Eng 53(1–4):171–174CrossRef
Zurück zum Zitat Truckenmuller R et al (2002) Low-cost thermoforming of micro fluidic analysis chips. JMicromech Microeng 12(4):375–379CrossRef Truckenmuller R et al (2002) Low-cost thermoforming of micro fluidic analysis chips. JMicromech Microeng 12(4):375–379CrossRef
Metadaten
Titel
Method for polymer hot embossing process development
verfasst von
Proyag Datta
Jost Goettert
Publikationsdatum
01.02.2007
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 3-4/2007
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-006-0183-2

Weitere Artikel der Ausgabe 3-4/2007

Microsystem Technologies 3-4/2007 Zur Ausgabe