Skip to main content
Erschienen in: Microsystem Technologies 5/2022

15.03.2022 | Technical Paper

Stress-driven nonlocal Timoshenko beam model for buckling analysis of carbon nanotubes constrained by surface van der Waals interactions

verfasst von: Chi Xu, Yang Li, Mingyue Lu, Zhendong Dai

Erschienen in: Microsystem Technologies | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the stress-driven nonlocal integral elasticity model is developed for the size-dependent buckling analysis of single-walled carbon nanotubes (SWCNT) in an array constrained by surface van der Waals (vdW) interactions. Using the Lennard–Jones (LJ) potential and Gaussian quadrature method, the vdW force of the continuum model of parallel adjacent CNTs is calculated. According to Hooke's law, the nonlinear vdW interaction is equivalent to a spring constant. Based on the stress-driven nonlocal model and Timoshenko beam theory, the governing equations and the natural boundary conditions of the CNT are derived using Hamilton's principle. Two extra constitutive boundary conditions are generated by the transformation of the Fredholm-type integral constitutive equation into an equivalence of a differential form. Using the Laplace transform technique and the eigenvalue method, the axial critical buckling loads of an SWCNT are analytically solved and compared with the results without surface vdW interaction under pre-pressure processors. In numerical simulations, the influences of the nonlocal elastic parameter, length-to-radii ratio, and type of the SWCNT on the critical buckling load are also examined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akbas SD (2019) Axially forced vibration analysis of cracked a nanorod. J Comput Appl Mech 50:63–68 Akbas SD (2019) Axially forced vibration analysis of cracked a nanorod. J Comput Appl Mech 50:63–68
Zurück zum Zitat Akbas SD (2020) Modal analysis of viscoelastic nanorods under an axially harmonic load. Adv Nano Res 8:277–282 Akbas SD (2020) Modal analysis of viscoelastic nanorods under an axially harmonic load. Adv Nano Res 8:277–282
Zurück zum Zitat Alimoradzadeh M, Akbas SD (2021) Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory. Eur Phys J plus 136:536CrossRef Alimoradzadeh M, Akbas SD (2021) Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory. Eur Phys J plus 136:536CrossRef
Zurück zum Zitat Aradhya SV, Garimella SV, Fisher TS (2008) Electrothermal bonding of carbon nanotubes to glass. J Electrochem Soc 155:K161–K165CrossRef Aradhya SV, Garimella SV, Fisher TS (2008) Electrothermal bonding of carbon nanotubes to glass. J Electrochem Soc 155:K161–K165CrossRef
Zurück zum Zitat Bai Y, Zhang R, Ye X, Zhu Z, Xie H, Shen B, Cai D, Liu B, Zhang C, Jia Z, Zhang S, Li X, Wei F (2018) Carbon nanotube bundles with tensile strength over 80 GPa. Nat Nanotechnol 13:589–595CrossRef Bai Y, Zhang R, Ye X, Zhu Z, Xie H, Shen B, Cai D, Liu B, Zhang C, Jia Z, Zhang S, Li X, Wei F (2018) Carbon nanotube bundles with tensile strength over 80 GPa. Nat Nanotechnol 13:589–595CrossRef
Zurück zum Zitat Bai Y, Yue H, Wang J, Shen B, Sun S, Wang S, Wang H, Li X, Xu Z, Zhang R, Wei F (2020) Super-durable ultralong carbon nanotubes. Science 369:1104–1106CrossRef Bai Y, Yue H, Wang J, Shen B, Sun S, Wang S, Wang H, Li X, Xu Z, Zhang R, Wei F (2020) Super-durable ultralong carbon nanotubes. Science 369:1104–1106CrossRef
Zurück zum Zitat Barretta R, Canadija M, Luciano R, de Sciarra FM (2018a) Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int J Eng Sci 126:53–67MathSciNetMATHCrossRef Barretta R, Canadija M, Luciano R, de Sciarra FM (2018a) Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int J Eng Sci 126:53–67MathSciNetMATHCrossRef
Zurück zum Zitat Barretta R, Luciano R, de Sciarra FM, Ruta G (2018b) Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur J Mech A-Solid 72:275–286MathSciNetMATHCrossRef Barretta R, Luciano R, de Sciarra FM, Ruta G (2018b) Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur J Mech A-Solid 72:275–286MathSciNetMATHCrossRef
Zurück zum Zitat Barretta R, Canadija M, de Sciarra FM (2019a) Nonlocal integral thermoelasticity: a thermodynamic framework for functionally graded beams. Compos Struct 225:111104CrossRef Barretta R, Canadija M, de Sciarra FM (2019a) Nonlocal integral thermoelasticity: a thermodynamic framework for functionally graded beams. Compos Struct 225:111104CrossRef
Zurück zum Zitat Barretta R, Faghidian SA, Luciano R (2019b) Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech Adv Mater Struc 26:1307–1315CrossRef Barretta R, Faghidian SA, Luciano R (2019b) Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech Adv Mater Struc 26:1307–1315CrossRef
Zurück zum Zitat Benguediab S, Tounsi A, Zidour M, Semmah A (2014) Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos Pt B-Eng 57:21–24CrossRef Benguediab S, Tounsi A, Zidour M, Semmah A (2014) Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos Pt B-Eng 57:21–24CrossRef
Zurück zum Zitat Bensattalah T, Hamidi A, Bouakkaz K, Zidour M, Daouadji TH (2020) Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory. J Nano Res 62:108–119CrossRef Bensattalah T, Hamidi A, Bouakkaz K, Zidour M, Daouadji TH (2020) Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory. J Nano Res 62:108–119CrossRef
Zurück zum Zitat Buehler MJ, Kong Y, Gao HJ (2004) Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J Eng Mater Technol-Trans ASME 126:245–249CrossRef Buehler MJ, Kong Y, Gao HJ (2004) Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J Eng Mater Technol-Trans ASME 126:245–249CrossRef
Zurück zum Zitat Buldum A (2014) Adhesion and friction characteristics of carbon nanotube arrays. Nanotechnology 25:345704CrossRef Buldum A (2014) Adhesion and friction characteristics of carbon nanotube arrays. Nanotechnology 25:345704CrossRef
Zurück zum Zitat Cao CH, Reiner A, Chung CH, Chang SH, Kao I, Kukta RV, Korach CS (2011) Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays. Carbon 49:3190–3199CrossRef Cao CH, Reiner A, Chung CH, Chang SH, Kao I, Kukta RV, Korach CS (2011) Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays. Carbon 49:3190–3199CrossRef
Zurück zum Zitat Ceballes S, Abdelkefi A (2020) Observations on the general nonlocal theory applied to axially loaded nanobeams. Microsyst Technol 27:739–761CrossRef Ceballes S, Abdelkefi A (2020) Observations on the general nonlocal theory applied to axially loaded nanobeams. Microsyst Technol 27:739–761CrossRef
Zurück zum Zitat Civalek O, Akbas SD, Akgoz B, Dastjerdi S (2021) Forced vibration analysis of composite beams reinforced by carbon nanotubes. Nanomaterials 11:571CrossRef Civalek O, Akbas SD, Akgoz B, Dastjerdi S (2021) Forced vibration analysis of composite beams reinforced by carbon nanotubes. Nanomaterials 11:571CrossRef
Zurück zum Zitat Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRef Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRef
Zurück zum Zitat Faroughi S, Sari MS, Abdelkefi A (2020) Nonlocal Timoshenko representation and analysis of multi-layered functionally graded nanobeams. Microsyst Technol 27:893–911CrossRef Faroughi S, Sari MS, Abdelkefi A (2020) Nonlocal Timoshenko representation and analysis of multi-layered functionally graded nanobeams. Microsyst Technol 27:893–911CrossRef
Zurück zum Zitat Gangele A, Garala SK, Pandey AK (2018) Influence of van der Waals forces on elastic and buckling characteristics of vertically aligned carbon nanotubes. Int J Mech Sci 146:191–199CrossRef Gangele A, Garala SK, Pandey AK (2018) Influence of van der Waals forces on elastic and buckling characteristics of vertically aligned carbon nanotubes. Int J Mech Sci 146:191–199CrossRef
Zurück zum Zitat Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110CrossRef Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110CrossRef
Zurück zum Zitat Guo Z, Chang T, Guo X, Gao H (2011) Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes. Phys Rev Lett 107:105502CrossRef Guo Z, Chang T, Guo X, Gao H (2011) Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes. Phys Rev Lett 107:105502CrossRef
Zurück zum Zitat Huang X, Yuan H, Hsia KJ, Zhang S (2010) Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res 3:32–42CrossRef Huang X, Yuan H, Hsia KJ, Zhang S (2010) Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res 3:32–42CrossRef
Zurück zum Zitat Huang K, Zhang S, Li J, Li Z (2019) Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes. Microsyst Technol 25:4303–4310CrossRef Huang K, Zhang S, Li J, Li Z (2019) Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes. Microsyst Technol 25:4303–4310CrossRef
Zurück zum Zitat Jagtap P, Reddy SK, Sharma D, Kumar P (2015) Tailoring energy absorption capacity of CNT forests through application of electric field. Carbon 95:126–136CrossRef Jagtap P, Reddy SK, Sharma D, Kumar P (2015) Tailoring energy absorption capacity of CNT forests through application of electric field. Carbon 95:126–136CrossRef
Zurück zum Zitat Jiang P, Qing H, Gao CF (2020) Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Appl Math Mech-Engl Ed 41:207–232MathSciNetMATHCrossRef Jiang P, Qing H, Gao CF (2020) Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Appl Math Mech-Engl Ed 41:207–232MathSciNetMATHCrossRef
Zurück zum Zitat Kiani K (2014) Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models. Acta Mech 225:3569–3589MathSciNetMATHCrossRef Kiani K (2014) Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models. Acta Mech 225:3569–3589MathSciNetMATHCrossRef
Zurück zum Zitat Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef
Zurück zum Zitat Li YP, Kang J, Choi JB, Nam JD, Suhr J (2015) Determination of material constants of vertically aligned carbon nanotube structures in compressions. Nanotechnology 26:245701CrossRef Li YP, Kang J, Choi JB, Nam JD, Suhr J (2015) Determination of material constants of vertically aligned carbon nanotube structures in compressions. Nanotechnology 26:245701CrossRef
Zurück zum Zitat Liew KM, Wong CH, Tan MJ (2005) Buckling properties of carbon nanotube bundles. Appl Phys Lett 87:041901CrossRef Liew KM, Wong CH, Tan MJ (2005) Buckling properties of carbon nanotube bundles. Appl Phys Lett 87:041901CrossRef
Zurück zum Zitat Lin F, Xiang Y (2014) Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams. Int J Struct Stab Dyn 14:21MathSciNetMATH Lin F, Xiang Y (2014) Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams. Int J Struct Stab Dyn 14:21MathSciNetMATH
Zurück zum Zitat Liu B, Wu F, Gui H, Zheng M, Zhou C (2017) Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11:31–53CrossRef Liu B, Wu F, Gui H, Zheng M, Zhou C (2017) Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11:31–53CrossRef
Zurück zum Zitat Lu WB, Liu B, Wu J, Xiao J, Hwang KC, Fu SY, Huang Y (2009) Continuum modeling of van der Waals interactions between carbon nanotube walls. Appl Phys Lett 94:101917 Lu WB, Liu B, Wu J, Xiao J, Hwang KC, Fu SY, Huang Y (2009) Continuum modeling of van der Waals interactions between carbon nanotube walls. Appl Phys Lett 94:101917
Zurück zum Zitat Malikan M, Eremeyev VA, Sedighi HM (2020) Buckling analysis of a non-concentric double-walled carbon nanotube. Acta Mech 231:5007–5020MathSciNetCrossRef Malikan M, Eremeyev VA, Sedighi HM (2020) Buckling analysis of a non-concentric double-walled carbon nanotube. Acta Mech 231:5007–5020MathSciNetCrossRef
Zurück zum Zitat Mohamed N, Mohamed SA, Eltaher MA (2021) Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng Comput 37:2823–2836CrossRef Mohamed N, Mohamed SA, Eltaher MA (2021) Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng Comput 37:2823–2836CrossRef
Zurück zum Zitat Mohammadimehr M, Monajemi AA, Afshari H (2020) Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams. Microsyst Technol Micro Nanosyst -Inf Storage Process Syst 26:3085–3099 Mohammadimehr M, Monajemi AA, Afshari H (2020) Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams. Microsyst Technol Micro Nanosyst -Inf Storage Process Syst 26:3085–3099
Zurück zum Zitat Pogorelov EG, Zhbanov AI, Chang YC, Yang S (2012) Universal curves for the van der Waals interaction between single-walled carbon nanotubes. Langmuir 28:1276–1282CrossRef Pogorelov EG, Zhbanov AI, Chang YC, Yang S (2012) Universal curves for the van der Waals interaction between single-walled carbon nanotubes. Langmuir 28:1276–1282CrossRef
Zurück zum Zitat Qu LT, Dai LM, Stone M, Xia ZH, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238–242CrossRef Qu LT, Dai LM, Stone M, Xia ZH, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238–242CrossRef
Zurück zum Zitat Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103:023511CrossRef Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103:023511CrossRef
Zurück zum Zitat Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156CrossRef Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156CrossRef
Zurück zum Zitat Ru CQ (2000) Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J Appl Phys 87:7227–7231CrossRef Ru CQ (2000) Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J Appl Phys 87:7227–7231CrossRef
Zurück zum Zitat Ru CQ (2001) Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J Mech Phys Solids 49:1265–1279MATHCrossRef Ru CQ (2001) Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J Mech Phys Solids 49:1265–1279MATHCrossRef
Zurück zum Zitat Semmah A, Tounsi A, Zidour M, Heireche H, Naceri M (2015) Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory. Fuller Nanotub Carbon Nanostruct 23:518–522CrossRef Semmah A, Tounsi A, Zidour M, Heireche H, Naceri M (2015) Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory. Fuller Nanotub Carbon Nanostruct 23:518–522CrossRef
Zurück zum Zitat Shi J-X, Natsuki T, Ni Q-Q (2014) Radial buckling of multi-walled carbon nanotubes under hydrostatic pressure. Appl Phys A-Mater Sci Process 117:1103–1108CrossRef Shi J-X, Natsuki T, Ni Q-Q (2014) Radial buckling of multi-walled carbon nanotubes under hydrostatic pressure. Appl Phys A-Mater Sci Process 117:1103–1108CrossRef
Zurück zum Zitat Sun YZ, Liew KM (2014) Effect of higher-order deformation gradients on buckling of single-walled carbon nanotubes. Compos Struct 109:279–285CrossRef Sun YZ, Liew KM (2014) Effect of higher-order deformation gradients on buckling of single-walled carbon nanotubes. Compos Struct 109:279–285CrossRef
Zurück zum Zitat Umeno Y, Sato M, Shima H, Sato M (2017) Atomistic model analysis of buckling behavior of compressed carbon nanotubes. Solid State Phenom 258:61–64CrossRef Umeno Y, Sato M, Shima H, Sato M (2017) Atomistic model analysis of buckling behavior of compressed carbon nanotubes. Solid State Phenom 258:61–64CrossRef
Zurück zum Zitat Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702CrossRef Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702CrossRef
Zurück zum Zitat Wittmaack BK, Volkov AN, Zhigilei LV (2018) Mesoscopic modeling of the uniaxial compression and recovery of vertically aligned carbon nanotube forests. Compos Sci Technol 166:66–85CrossRef Wittmaack BK, Volkov AN, Zhigilei LV (2018) Mesoscopic modeling of the uniaxial compression and recovery of vertically aligned carbon nanotube forests. Compos Sci Technol 166:66–85CrossRef
Zurück zum Zitat Yao X, Sun Y (2012) Axially compressive deformation mechanisms of single- and multi-walled carbon nanotubes via finite element analysis. J Comput Theor Nanosci 9:696–706CrossRef Yao X, Sun Y (2012) Axially compressive deformation mechanisms of single- and multi-walled carbon nanotubes via finite element analysis. J Comput Theor Nanosci 9:696–706CrossRef
Zurück zum Zitat Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128CrossRef Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128CrossRef
Zurück zum Zitat Yuan X, Wang Y, Zhu B (2018) Adhesion between two carbon nanotubes: insights from molecular dynamics simulations and continuum mechanics. Int J Mech Sci 138–139:323–336CrossRef Yuan X, Wang Y, Zhu B (2018) Adhesion between two carbon nanotubes: insights from molecular dynamics simulations and continuum mechanics. Int J Mech Sci 138–139:323–336CrossRef
Zurück zum Zitat Zhang P, Qing H (2021a) Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos Struct 265:113770CrossRef Zhang P, Qing H (2021a) Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos Struct 265:113770CrossRef
Zurück zum Zitat Zhang P, Qing H, Gao C-F (2020) Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos Struct 245:112362CrossRef Zhang P, Qing H, Gao C-F (2020) Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos Struct 245:112362CrossRef
Zurück zum Zitat Zhao J, Jiang J-W, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57:108–119CrossRef Zhao J, Jiang J-W, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57:108–119CrossRef
Zurück zum Zitat Zhao J, Jia Y, Wei N, Rabczuk T (2015) Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc R Soc A Math Phys Eng Sci 471:20150229 Zhao J, Jia Y, Wei N, Rabczuk T (2015) Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc R Soc A Math Phys Eng Sci 471:20150229
Metadaten
Titel
Stress-driven nonlocal Timoshenko beam model for buckling analysis of carbon nanotubes constrained by surface van der Waals interactions
verfasst von
Chi Xu
Yang Li
Mingyue Lu
Zhendong Dai
Publikationsdatum
15.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2022
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-022-05266-z

Weitere Artikel der Ausgabe 5/2022

Microsystem Technologies 5/2022 Zur Ausgabe