Skip to main content
Erschienen in: Microsystem Technologies 7/2022

16.06.2022 | Technical Paper

Graphene piezoresistive flexible MEMS force sensor for bi-axial micromanipulation applications

verfasst von: Monica Lamba, Himanshu Chaudhary, Kulwant Singh, Premraj Keshyep, Vibhor Kumar

Erschienen in: Microsystem Technologies | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this work is to design, simulate, and analyze a bi-axial piezoresistive MEMS (Micro-Electro-Mechanical System) force sensor, which has the capability of flexibility, high sensitivity and sensing forces in nano-Newton ranges. To achieve this, a novel combination of polydimethylsiloxane (PDMS) as substrate material for microcantilever and graphene as piezoresistors are taken in this study. Force to be sensed is applied on the cantilever beam which generates its output in the form of displacement and by using smart piezoresistive sensing mechanism displacement is converted into corresponding voltage. Finite element analysis approach is used for designing and simulation of the proposed force sensor. The force sensitivity and stiffness are achieved as 0.566524 mV/nN and, 0.263 nN/µm in ‘y’ direction whereas 0.63039 mV/nN and, 0.039 nN/µm in ‘z’ direction, respectively. It is found in this study the stiffness of cantilever beam plays significant role in affecting the sensitivity of the sensor. The designed force sensor has ability to sense bi-axial forces and therefore suitable for microbotics and health care applications, while operating range of the sensors is ideal for a wide range of applications including microbotics, living cell handling, microassembly, nano-scale material characterization, minimal invasive surgeries and heath care applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baki P, Székely G, Kósa G (2013) Design and characterization of a novel, robust, tri-axial force sensor. Sens Actuators A 192:101–110CrossRef Baki P, Székely G, Kósa G (2013) Design and characterization of a novel, robust, tri-axial force sensor. Sens Actuators A 192:101–110CrossRef
Zurück zum Zitat Behera B, Padmanabhan D, Pandya HJ (2021) A ring-shaped MEMS-based piezoresistive force sensor for cardiac ablation catheters. IEEE Sens J 21(22):26042–26049CrossRef Behera B, Padmanabhan D, Pandya HJ (2021) A ring-shaped MEMS-based piezoresistive force sensor for cardiac ablation catheters. IEEE Sens J 21(22):26042–26049CrossRef
Zurück zum Zitat Cullinan MA, Panas RM, Culpepper ML (2012) A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nano Newton level force metrology. Nanotechnology 23(32):325501CrossRef Cullinan MA, Panas RM, Culpepper ML (2012) A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nano Newton level force metrology. Nanotechnology 23(32):325501CrossRef
Zurück zum Zitat Duc T C, Creemer J F, Sarro P M (2006a) Piezoresistive cantilever for nano-Newton sensing in two dimensions. In: 19th IEEE international conference on micro electro mechanical systems, pp 586–589 Duc T C, Creemer J F, Sarro P M (2006a) Piezoresistive cantilever for nano-Newton sensing in two dimensions. In: 19th IEEE international conference on micro electro mechanical systems, pp 586–589
Zurück zum Zitat Duc TC, Creemer JF, Sarro PM (2006b) Lateral nano-Newton force-sensing piezoresistive cantilever for microparticle handling. J Micromech Microeng 16(6):S102CrossRef Duc TC, Creemer JF, Sarro PM (2006b) Lateral nano-Newton force-sensing piezoresistive cantilever for microparticle handling. J Micromech Microeng 16(6):S102CrossRef
Zurück zum Zitat Feng GH, Tsai MY (2010) Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sens Actuators A Phys 162(1):100–106CrossRef Feng GH, Tsai MY (2010) Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sens Actuators A Phys 162(1):100–106CrossRef
Zurück zum Zitat Joyce R, Singh K, Varghese S, Akhtar J (2015) Stress reduction in silicon/oxidized silicon–Pyrex glass anodic bonding for MEMS device packaging: RF switches and pressure sensors. J Mater Sci Mater Electron 26(1):411–423CrossRef Joyce R, Singh K, Varghese S, Akhtar J (2015) Stress reduction in silicon/oxidized silicon–Pyrex glass anodic bonding for MEMS device packaging: RF switches and pressure sensors. J Mater Sci Mater Electron 26(1):411–423CrossRef
Zurück zum Zitat Jung Y, Jung K, Park B, Choi J, Kim D, Park J, Ko J, Cho H (2019) Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous PDMS sponge. Micro Nano Syst Lett 7(1):1–9CrossRef Jung Y, Jung K, Park B, Choi J, Kim D, Park J, Ko J, Cho H (2019) Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous PDMS sponge. Micro Nano Syst Lett 7(1):1–9CrossRef
Zurück zum Zitat Kale NS, Nag S, Pinto R (2008) Fabrication and characterization of a polymeric microcantilever with an encapsulated hotwire CVD polysilicon piezoresistor. J Microelectromech Syst 18(1):79–87CrossRef Kale NS, Nag S, Pinto R (2008) Fabrication and characterization of a polymeric microcantilever with an encapsulated hotwire CVD polysilicon piezoresistor. J Microelectromech Syst 18(1):79–87CrossRef
Zurück zum Zitat Kamat AM, Pei Y, Kottapalli AG (2019) Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting. Nanomaterials 9(7):954CrossRef Kamat AM, Pei Y, Kottapalli AG (2019) Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting. Nanomaterials 9(7):954CrossRef
Zurück zum Zitat Kan T, Takahashi H, Binh-Khiem N, Aoyama Y, Takei Y, Noda K, Shimoyama I (2013) Design of a piezoresistive triaxial force sensor probe using the sidewall doping method. J Micromech Microeng 23(3):035027CrossRef Kan T, Takahashi H, Binh-Khiem N, Aoyama Y, Takei Y, Noda K, Shimoyama I (2013) Design of a piezoresistive triaxial force sensor probe using the sidewall doping method. J Micromech Microeng 23(3):035027CrossRef
Zurück zum Zitat Karumuthil SC, Singh K, Valiyaneerilakkal U, Akhtar J, Varghese S (2020) Fabrication of poly(vinylidene fluoridetrifluoroethylene)–zinc oxide based piezoelectric pressure sensor. Sens Actuators A 303:111677CrossRef Karumuthil SC, Singh K, Valiyaneerilakkal U, Akhtar J, Varghese S (2020) Fabrication of poly(vinylidene fluoridetrifluoroethylene)–zinc oxide based piezoelectric pressure sensor. Sens Actuators A 303:111677CrossRef
Zurück zum Zitat Kouravand S (2011) Design and modeling of some sensing and actuating mechanisms for MEMS applications. Appl Math Model 35(10):5173–5181MATHCrossRef Kouravand S (2011) Design and modeling of some sensing and actuating mechanisms for MEMS applications. Appl Math Model 35(10):5173–5181MATHCrossRef
Zurück zum Zitat Krishnamoorthy U, Olsson RH, Bogart GR, Baker MS, Carr DW, Swiler TP, Clews PJ (2008) In-plane MEMSbased nano-g accelerometer with sub-wavelength optical resonant sensor. Sens Actuators A 145:283–290CrossRef Krishnamoorthy U, Olsson RH, Bogart GR, Baker MS, Carr DW, Swiler TP, Clews PJ (2008) In-plane MEMSbased nano-g accelerometer with sub-wavelength optical resonant sensor. Sens Actuators A 145:283–290CrossRef
Zurück zum Zitat Lamba M, Chaudhary H, Singh K (2019) Analytical study of MEMS/NEMS force sensor for microbotics applications. IOP Conf Ser Mater Sci Eng 594(1):012021CrossRef Lamba M, Chaudhary H, Singh K (2019) Analytical study of MEMS/NEMS force sensor for microbotics applications. IOP Conf Ser Mater Sci Eng 594(1):012021CrossRef
Zurück zum Zitat Lamba M, Chaudhary H, Singh K (2020a) Optimized analysis of sensitivity and non-linearity for PDMS–graphene MEMS force sensor. IETE J Res 66:1–15CrossRef Lamba M, Chaudhary H, Singh K (2020a) Optimized analysis of sensitivity and non-linearity for PDMS–graphene MEMS force sensor. IETE J Res 66:1–15CrossRef
Zurück zum Zitat Lamba M, Chaudhary H, Singh K (2020b) Design analysis of polysilicon piezoresistors PDMS (polydimethylsiloxane) microcantilever based MEMS Force sensor. Int J Mod Phys B 4(9):2050072CrossRef Lamba M, Chaudhary H, Singh K (2020b) Design analysis of polysilicon piezoresistors PDMS (polydimethylsiloxane) microcantilever based MEMS Force sensor. Int J Mod Phys B 4(9):2050072CrossRef
Zurück zum Zitat Lamba M, Chaudhary H, Singh K (2020c) Model prediction of microcantilever using DOE for stress and Eigen frequency analysis for force measurement. IOP Conf Ser Mater Sci Eng 748(1):012025CrossRef Lamba M, Chaudhary H, Singh K (2020c) Model prediction of microcantilever using DOE for stress and Eigen frequency analysis for force measurement. IOP Conf Ser Mater Sci Eng 748(1):012025CrossRef
Zurück zum Zitat Lamba M, Mittal N, Singh K, Chaudhary H (2020d) Design analysis of polysilicon piezoresistors PDMS (polydimethylsiloxane) microcantilever based MEMS Force sensor. Int J Mod Phys B 34(9):2050072CrossRef Lamba M, Mittal N, Singh K, Chaudhary H (2020d) Design analysis of polysilicon piezoresistors PDMS (polydimethylsiloxane) microcantilever based MEMS Force sensor. Int J Mod Phys B 34(9):2050072CrossRef
Zurück zum Zitat Li P, You Z, Cui T (2012) Graphene cantilever beams for nano switches. Appl Phys Lett 101(9):093111CrossRef Li P, You Z, Cui T (2012) Graphene cantilever beams for nano switches. Appl Phys Lett 101(9):093111CrossRef
Zurück zum Zitat Liu X, Mwangi M, Li X (2011) Paper-based piezoresistive MEMS sensors. Lab Chip 11(13):2189CrossRef Liu X, Mwangi M, Li X (2011) Paper-based piezoresistive MEMS sensors. Lab Chip 11(13):2189CrossRef
Zurück zum Zitat Mariappan N (2019) Recent trends in Nanotechnology applications in surgical specialties and orthopedic surgery. Biomed Pharmacol J 12(3):1095–1127CrossRef Mariappan N (2019) Recent trends in Nanotechnology applications in surgical specialties and orthopedic surgery. Biomed Pharmacol J 12(3):1095–1127CrossRef
Zurück zum Zitat Matsui K, Takei Y, Inaba A, Takahata T, Matsumoto K, Shimoyama I (2016) Processing of graphene into a cantilever beam structure using a focused ion beam. Micro Nano Lett 11(11):670–674CrossRef Matsui K, Takei Y, Inaba A, Takahata T, Matsumoto K, Shimoyama I (2016) Processing of graphene into a cantilever beam structure using a focused ion beam. Micro Nano Lett 11(11):670–674CrossRef
Zurück zum Zitat Menciassi A, Eisinberg A, Carrozza MC, Dario P (2003) Force sensing micro instrument for measuring tissue properties and pulse in microsurgery. IEEE/ASME Trans Mechatron 8(1):10–17CrossRef Menciassi A, Eisinberg A, Carrozza MC, Dario P (2003) Force sensing micro instrument for measuring tissue properties and pulse in microsurgery. IEEE/ASME Trans Mechatron 8(1):10–17CrossRef
Zurück zum Zitat Moldova O, Deen MJ, Marsal LF (2015) Graphene electronic sensors—review of recent developments and future challenges. IET Circuits Devices Syst 9(6):446–453CrossRef Moldova O, Deen MJ, Marsal LF (2015) Graphene electronic sensors—review of recent developments and future challenges. IET Circuits Devices Syst 9(6):446–453CrossRef
Zurück zum Zitat Nag M, Singh J, Kumar A, Alvi P A (2019) Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor. Microsyst Technol 25(10) Nag M, Singh J, Kumar A, Alvi P A (2019) Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor. Microsyst Technol 25(10)
Zurück zum Zitat Pandya HJ, Kim HT, Roy R (2014) MEMS based low cost piezoresistive microcantilever force sensor and sensor module. Mater Sci Semicond Process 19:163–173CrossRef Pandya HJ, Kim HT, Roy R (2014) MEMS based low cost piezoresistive microcantilever force sensor and sensor module. Mater Sci Semicond Process 19:163–173CrossRef
Zurück zum Zitat Park WT, Kotlanka RK, Lou L (2013) MEMS tri-axial force sensor with an integrated mechanical stopper for guidewire applications. Microsyst Technol 19(7):1005–1015CrossRef Park WT, Kotlanka RK, Lou L (2013) MEMS tri-axial force sensor with an integrated mechanical stopper for guidewire applications. Microsyst Technol 19(7):1005–1015CrossRef
Zurück zum Zitat Pyo S, Lee JI, Kim MO, Chung T, Oh Y, Lim SC, Park J, Kim J (2014) Development of a fexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite. J Micromech Microeng 24:075012CrossRef Pyo S, Lee JI, Kim MO, Chung T, Oh Y, Lim SC, Park J, Kim J (2014) Development of a fexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite. J Micromech Microeng 24:075012CrossRef
Zurück zum Zitat Pyo S, Lee J-I, Kim M-O, Lee H-K, Kim J (2019) Polymer-based flexible and multi-directional tactile sensor with multiple NiCr piezoresistors. Micro Nano Syst Lett 7(1):55CrossRef Pyo S, Lee J-I, Kim M-O, Lee H-K, Kim J (2019) Polymer-based flexible and multi-directional tactile sensor with multiple NiCr piezoresistors. Micro Nano Syst Lett 7(1):55CrossRef
Zurück zum Zitat Rana V, Singh A, Ramesh A, Dhyani V, Das S, Singh P (2019) Sidewall transfer patterning-based nano-crystalline MoS 2 sensing element for stress and optical MEMS sensor. In: 2019 IEEE 32nd international conference on micro electro mechanical systems (MEMS) IEEE, pp 636–639 Rana V, Singh A, Ramesh A, Dhyani V, Das S, Singh P (2019) Sidewall transfer patterning-based nano-crystalline MoS 2 sensing element for stress and optical MEMS sensor. In: 2019 IEEE 32nd international conference on micro electro mechanical systems (MEMS) IEEE, pp 636–639
Zurück zum Zitat Shen Y, Fukuda T (2014) State of the art: micro-nanorobotic manipulation in single cell analysis. Robot Biomim 1(1):1–13CrossRef Shen Y, Fukuda T (2014) State of the art: micro-nanorobotic manipulation in single cell analysis. Robot Biomim 1(1):1–13CrossRef
Zurück zum Zitat Singh K, Gupta SK, Azam A (2009) A wet etch method with improved yield for realizing polysilicon resistors in batch fabrication of MEMS pressure sensor. Sens Rev 29(3):260–265CrossRef Singh K, Gupta SK, Azam A (2009) A wet etch method with improved yield for realizing polysilicon resistors in batch fabrication of MEMS pressure sensor. Sens Rev 29(3):260–265CrossRef
Zurück zum Zitat Singh K, Akhtar J, Varghese S (2014) Multiwalled carbon nanotube-polyimide nanocomposite for MEMS piezoresistive pressure sensor applications. Microsyst Technol 20(12):2255–2259CrossRef Singh K, Akhtar J, Varghese S (2014) Multiwalled carbon nanotube-polyimide nanocomposite for MEMS piezoresistive pressure sensor applications. Microsyst Technol 20(12):2255–2259CrossRef
Zurück zum Zitat Singh K, Varghese S, Akhtar J (2015) Ultra uniform arrays of micro patterns on large area substrate by employing wet chemical etching. Mater Sci Semicond Process 31:351–357CrossRef Singh K, Varghese S, Akhtar J (2015) Ultra uniform arrays of micro patterns on large area substrate by employing wet chemical etching. Mater Sci Semicond Process 31:351–357CrossRef
Zurück zum Zitat Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94(1):42–49CrossRef Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94(1):42–49CrossRef
Zurück zum Zitat Sruti AN, Jagannadham K (2010) Electrical conductivity of graphene composites with In and In–Ga alloy. J Electron Mater 38(8):1268–1276CrossRef Sruti AN, Jagannadham K (2010) Electrical conductivity of graphene composites with In and In–Ga alloy. J Electron Mater 38(8):1268–1276CrossRef
Zurück zum Zitat Takahashi H, Thanh-Vinh N, Jung UG, Matsumoto K, Shimoyama I (2014) MEMS two-axis force plate array used to measure the ground reaction forces during the running motion of an ant. J Micromech Microeng 24(6):065014CrossRef Takahashi H, Thanh-Vinh N, Jung UG, Matsumoto K, Shimoyama I (2014) MEMS two-axis force plate array used to measure the ground reaction forces during the running motion of an ant. J Micromech Microeng 24(6):065014CrossRef
Zurück zum Zitat Tibrewala A, Phataralaoha A, Büttgenbach S (2008) Simulation, fabrication and characterization of a 3D piezoresistive force sensor. Sens Actuators A: Phys 147(2):430–435CrossRef Tibrewala A, Phataralaoha A, Büttgenbach S (2008) Simulation, fabrication and characterization of a 3D piezoresistive force sensor. Sens Actuators A: Phys 147(2):430–435CrossRef
Zurück zum Zitat Tran Thi Thuy H, Dinh TD, Vu Q, Tuan PQ, Thinh Aoyagi M, Bui N, My D, Van T, Bui TT (2018) A robust two-axis tilt angle sensor based on air/liquid two-phase dielectric capacitive sensing structure. IETE J Res 66(5):1–12 Tran Thi Thuy H, Dinh TD, Vu Q, Tuan PQ, Thinh Aoyagi M, Bui N, My D, Van T, Bui TT (2018) A robust two-axis tilt angle sensor based on air/liquid two-phase dielectric capacitive sensing structure. IETE J Res 66(5):1–12
Zurück zum Zitat Verma P, Punetha D, Pandey SK (2020) Sensitivity optimization of MEMS based piezoresistive pressure sensor for harsh environment. Silicon 12(11):2663–2671CrossRef Verma P, Punetha D, Pandey SK (2020) Sensitivity optimization of MEMS based piezoresistive pressure sensor for harsh environment. Silicon 12(11):2663–2671CrossRef
Zurück zum Zitat Wei H, Geng W, Bi K, Li T, Li X, Qiao X, Shi Y et al (2022) High-performance piezoelectric-type MEMS vibration sensor based on LiNbO3 single-crystal cantilever beams. Micromachines 13(2):329CrossRef Wei H, Geng W, Bi K, Li T, Li X, Qiao X, Shi Y et al (2022) High-performance piezoelectric-type MEMS vibration sensor based on LiNbO3 single-crystal cantilever beams. Micromachines 13(2):329CrossRef
Zurück zum Zitat Xu T, Wang H, Xia Y (2017) Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure. Frontiers of Mechanical Engineering 12(4):546–553CrossRef Xu T, Wang H, Xia Y (2017) Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure. Frontiers of Mechanical Engineering 12(4):546–553CrossRef
Zurück zum Zitat Zhang YI, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46(10):2329–2339CrossRef Zhang YI, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46(10):2329–2339CrossRef
Zurück zum Zitat Zhou Q, Ben-Tzvi P, Iqbal A, Fan D (2009) Design, analysis and optimization of magnetic microactuators. ASME Int Mech Eng Congr Exposition 43857:503–512 Zhou Q, Ben-Tzvi P, Iqbal A, Fan D (2009) Design, analysis and optimization of magnetic microactuators. ASME Int Mech Eng Congr Exposition 43857:503–512
Metadaten
Titel
Graphene piezoresistive flexible MEMS force sensor for bi-axial micromanipulation applications
verfasst von
Monica Lamba
Himanshu Chaudhary
Kulwant Singh
Premraj Keshyep
Vibhor Kumar
Publikationsdatum
16.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2022
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-022-05312-w

Weitere Artikel der Ausgabe 7/2022

Microsystem Technologies 7/2022 Zur Ausgabe