Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 2/2013

01.03.2013 | Original Paper

Numerical Investigation of the Dynamic Compressive Behaviour of Rock Materials at High Strain Rate

verfasst von: Y. Hao, H. Hao

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamic compressive strength of rock materials increases with the strain rate. They are usually obtained by conducting laboratory tests such as split Hopkinson pressure bar (SHPB) test or drop-weight test. It is commonly agreed now that the dynamic increase factor (DIF) obtained from impact test is affected by lateral inertia confinement, friction confinement between the specimen and impact materials and the specimen sizes and geometries. Therefore, those derived directly from testing data do not necessarily reflect the true dynamic material properties. The influences of these parameters, however, are not straightforward to be quantified in laboratory tests. Therefore, the empirical DIF relations of rock materials obtained directly from impact tests consist of contributions from lateral inertia and end friction confinements, which need be eliminated to reflect the true dynamic material properties. Moreover, different rocks, such as granite, limestone and tuff have different material parameters, e.g., equation of state (EOS) and strength, which may also affect the DIF of materials but are not explicitly studied in the open literature. In the present study, numerical models of granite, limestone and tuff materials with different EOS and strength under impact loads are developed to simulate SHPB tests and to study the influences of EOS and strength, lateral inertia confinement and end friction confinement effects on their respective DIFs in the strain rate range between 1 and 1,000 s−1. The commercial software AUTODYN with user-provided subroutines is used to perform the numerical simulations of SHPB tests. Numerical simulation results indicate that the lateral inertia confinement, friction confinement and specimen aspect (L/D) ratio significantly influence DIF obtained from impact tests and the inertia confinement effect is different for different rocks. Based on the numerical results, quantifications on the relative contributions from the lateral inertia confinement and the material strain rate effect on DIF of granite, limestone and tuff material compressive strength are made. The effects of friction coefficient, L/D ratio and rock type on DIF are discussed. Empirical relations of DIF with strain rate for the three rock materials representing the true material strain rate effect are also proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bischoff PH, Perry SH (1991) Compressive behaviour of concrete at high strain rates. Mater Struct 24:425–450CrossRef Bischoff PH, Perry SH (1991) Compressive behaviour of concrete at high strain rates. Mater Struct 24:425–450CrossRef
Zurück zum Zitat Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32:907–916CrossRef Cai M, Kaiser PK, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys Chem Earth 32:907–916CrossRef
Zurück zum Zitat Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York
Zurück zum Zitat Cho SH, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min Sci 40:763–777CrossRef Cho SH, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min Sci 40:763–777CrossRef
Zurück zum Zitat Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–179CrossRef Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–179CrossRef
Zurück zum Zitat Forrestal MJ, Wright TW, Chen W (2007) The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Impact Eng 34:405–411CrossRef Forrestal MJ, Wright TW, Chen W (2007) The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Impact Eng 34:405–411CrossRef
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef
Zurück zum Zitat Georgin JF, Reynouard JM (2003) Modeling of structures subjected to impact: concrete behaviour under high strain rate. Cem Concr Compos 25:131–143CrossRef Georgin JF, Reynouard JM (2003) Modeling of structures subjected to impact: concrete behaviour under high strain rate. Cem Concr Compos 25:131–143CrossRef
Zurück zum Zitat Goldsmith W, Sackman JL, Ewert C (1976) Static and dynamic fracture strength of barre granite. Int J Rock Mech Min Sci Geomech Abstr 13:303–309CrossRef Goldsmith W, Sackman JL, Ewert C (1976) Static and dynamic fracture strength of barre granite. Int J Rock Mech Min Sci Geomech Abstr 13:303–309CrossRef
Zurück zum Zitat Gupta YM, Seaman L (1978) Local response of reinforced concrete to missile impacts. Nucl Eng Design 45:507–514CrossRef Gupta YM, Seaman L (1978) Local response of reinforced concrete to missile impacts. Nucl Eng Design 45:507–514CrossRef
Zurück zum Zitat Hakalehto KO (1969) The behavior of rock under impulse loads. A study using the Hopkinson split bar method, CTA Polytechnica Scandinavica, Chemistry including Metallurgy Series No. 81 Hakalehto KO (1969) The behavior of rock under impulse loads. A study using the Hopkinson split bar method, CTA Polytechnica Scandinavica, Chemistry including Metallurgy Series No. 81
Zurück zum Zitat Hao Y, Hao H (2011) Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate. Int J Protective Struct 2(2):177–206CrossRef Hao Y, Hao H (2011) Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate. Int J Protective Struct 2(2):177–206CrossRef
Zurück zum Zitat Hao H, Hao Y, Li ZX (2009) A numerical study of factors influencing high-speed impact tests of concrete material properties. In: Wu C, Lok TS (eds) Keynote in proceedings of the 8th international conference on shock and impact loads on structures. CI-Premier Pte Ltd, Adelaide, pp 37–52 Hao H, Hao Y, Li ZX (2009) A numerical study of factors influencing high-speed impact tests of concrete material properties. In: Wu C, Lok TS (eds) Keynote in proceedings of the 8th international conference on shock and impact loads on structures. CI-Premier Pte Ltd, Adelaide, pp 37–52
Zurück zum Zitat Hao Y, Hao H, Li ZX (2010) Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties. Int J Protective Struct 1(1):145–167CrossRef Hao Y, Hao H, Li ZX (2010) Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties. Int J Protective Struct 1(1):145–167CrossRef
Zurück zum Zitat Hao Y, Hao H, Zhang XH (2012) Numerical analysis of concrete material properties at high strain rate under direct tension. Int J Impact Eng 39:51–62CrossRef Hao Y, Hao H, Zhang XH (2012) Numerical analysis of concrete material properties at high strain rate under direct tension. Int J Impact Eng 39:51–62CrossRef
Zurück zum Zitat Herrmann W (1969) Constitutive equation for the dynamic compaction of ductile porous materials. J Appl Phys 40(6):2490–2499CrossRef Herrmann W (1969) Constitutive equation for the dynamic compaction of ductile porous materials. J Appl Phys 40(6):2490–2499CrossRef
Zurück zum Zitat Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc 62:676–700CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc 62:676–700CrossRef
Zurück zum Zitat Kubota S, Ogata Y, Wada Y, Simangunsong G, Shimada H, Matsui K (2008) Estimation of dynamic tensile strength of sandstone. Int J Rock Mech Min Sci 45:397–406CrossRef Kubota S, Ogata Y, Wada Y, Simangunsong G, Shimada H, Matsui K (2008) Estimation of dynamic tensile strength of sandstone. Int J Rock Mech Min Sci 45:397–406CrossRef
Zurück zum Zitat Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40:343–360CrossRef Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40:343–360CrossRef
Zurück zum Zitat Li Y, Xia C (2000) Time-dependent tests on intact rocks in uniaxial compression. Int J Rock Mech Min Sci 37:467–475CrossRef Li Y, Xia C (2000) Time-dependent tests on intact rocks in uniaxial compression. Int J Rock Mech Min Sci 37:467–475CrossRef
Zurück zum Zitat Li HB, Zhao J, Li JR, Liu YQ, Zhou QC (2004) Experimental studies on the strength of different rock types under dynamic compression. Int J Rock Mech Min Sci 41(3):68–73 Li HB, Zhao J, Li JR, Liu YQ, Zhou QC (2004) Experimental studies on the strength of different rock types under dynamic compression. Int J Rock Mech Min Sci 41(3):68–73
Zurück zum Zitat Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39CrossRef Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39CrossRef
Zurück zum Zitat Lindholm US, Yeakley LM, Nagy A (1974) The dynamic strength and fracture properties of dresser basalt. Int J Rock Mech Min Sci Geomech Abstr 11:181–191CrossRef Lindholm US, Yeakley LM, Nagy A (1974) The dynamic strength and fracture properties of dresser basalt. Int J Rock Mech Min Sci Geomech Abstr 11:181–191CrossRef
Zurück zum Zitat Ma GW, Hao H, Wang F (2011) Simulations of explosion-induced damage to underground rock chambers. J Rock Mech Geotech Eng 3(1):19–29CrossRef Ma GW, Hao H, Wang F (2011) Simulations of explosion-induced damage to underground rock chambers. J Rock Mech Geotech Eng 3(1):19–29CrossRef
Zurück zum Zitat Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25:729–737CrossRef Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25:729–737CrossRef
Zurück zum Zitat Olsson WA (1991) The compressive strength of tuff as a function of strain rate from 10−6 to 103/sec. Int J Rock Mech Min Sci Geomech Abstr 28(1):115–118CrossRef Olsson WA (1991) The compressive strength of tuff as a function of strain rate from 10−6 to 103/sec. Int J Rock Mech Min Sci Geomech Abstr 28(1):115–118CrossRef
Zurück zum Zitat Qian QH, Zhou XP (2011) Quantitative analysis of rockburst for surrounding rocks and zonal disintegration mechanism in deep tunnels. J Rock Mech Geotech Eng 3(1):1–9CrossRef Qian QH, Zhou XP (2011) Quantitative analysis of rockburst for surrounding rocks and zonal disintegration mechanism in deep tunnels. J Rock Mech Geotech Eng 3(1):1–9CrossRef
Zurück zum Zitat Sylven ET, Agarwal S, Briant CL, Cleveland RO (2004) High strain rate testing of kidney stones. J Mater Sci Mater Med 15:613–617CrossRef Sylven ET, Agarwal S, Briant CL, Cleveland RO (2004) High strain rate testing of kidney stones. J Mater Sci Mater Med 15:613–617CrossRef
Zurück zum Zitat Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163:1091–1100CrossRef Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163:1091–1100CrossRef
Zurück zum Zitat Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41:252–260CrossRef Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41:252–260CrossRef
Zurück zum Zitat Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min Sci 45:879–887CrossRef Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min Sci 45:879–887CrossRef
Zurück zum Zitat Zhou XQ, Hao H (2008) Modelling of compressive behaviour of concrete-like materials at high strain rate. Int J Solids Struct 45:4648–4661CrossRef Zhou XQ, Hao H (2008) Modelling of compressive behaviour of concrete-like materials at high strain rate. Int J Solids Struct 45:4648–4661CrossRef
Metadaten
Titel
Numerical Investigation of the Dynamic Compressive Behaviour of Rock Materials at High Strain Rate
verfasst von
Y. Hao
H. Hao
Publikationsdatum
01.03.2013
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 2/2013
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-012-0268-4

Weitere Artikel der Ausgabe 2/2013

Rock Mechanics and Rock Engineering 2/2013 Zur Ausgabe