Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 6/2015

14.09.2015 | Original Paper

A Lagrangian Approach to Modelling Proppant Transport with Tip Screen-Out in KGD Hydraulic Fractures

verfasst von: E. V. Dontsov, A. P. Peirce

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study introduces a continuum approach to model proppant transport in hydraulic fractures in a Lagrangian frame of reference. The model for the proppant transport is based on the recently obtained slurry flow solution inside a channel, where the latter utilizes a phenomenological constitutive relationship for a slurry. This approach allows us to describe the transition from Poiseuille flow with an effective viscosity to Darcy flow as the particle concentration increases towards the maximum value. The algorithm is presented for the one-dimensional case, for which propagation of a symmetric Kristinovich–Zheltov–Geertsma–De Klerk fracture is considered. To examine the effectiveness of the Lagrangian approach for proppant transport modelling, a set of parameters, for which proppant particles reach the fracture tip and cause the development of a proppant plug is selected. In this situation, the coupling between the hydraulic fracture propagation and proppant transport is the most significant. To estimate the accuracy of the Lagrangian proppant transport model, the results are compared to the predictions of an Eulerian proppant transport model, which utilizes the same algorithm for hydraulic fracture propagation. It is shown that, although both approaches have the same convergence rate, the error of the Lagrangian approach is three to five times smaller, which depends on the number of proppant elements used in the Lagrangian approach. This permits us to use a coarser mesh for hydraulic fracture propagation, and to obtain results with similar accuracy up to a hundred times faster.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44:739–757CrossRef Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44:739–757CrossRef
Zurück zum Zitat Andrews MJ, O’Rourke PJ (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiph Flow 22:379–402CrossRef Andrews MJ, O’Rourke PJ (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiph Flow 22:379–402CrossRef
Zurück zum Zitat Boyer F, Guazzelli E, Pouliquen O (2011) Unifying suspension and granular rheology. Phys Rev Lett 107:188301CrossRef Boyer F, Guazzelli E, Pouliquen O (2011) Unifying suspension and granular rheology. Phys Rev Lett 107:188301CrossRef
Zurück zum Zitat Carter ED (1957) Optimum fluid characteristics for fracture extension. In: Howard GC, Fast CR (eds) Drilling and production practices, pp 261–270 Carter ED (1957) Optimum fluid characteristics for fracture extension. In: Howard GC, Fast CR (eds) Drilling and production practices, pp 261–270
Zurück zum Zitat Chekhonin E, Levonyan K (2012) Hydraulic fracture propagation in highly permeable formations, with applications to tip screenout. Int J Rock Mech Min 50:19–28CrossRef Chekhonin E, Levonyan K (2012) Hydraulic fracture propagation in highly permeable formations, with applications to tip screenout. Int J Rock Mech Min 50:19–28CrossRef
Zurück zum Zitat Daneshy AA (1978) Numerical solution of sand transport in hydraulic fracturing. J Pet Technol 132–140 Daneshy AA (1978) Numerical solution of sand transport in hydraulic fracturing. J Pet Technol 132–140
Zurück zum Zitat Davis RH, Acrivos A (1985) Sedimentation of noncolloidal particles at low reynolds numbers. Annu Rev Fluid Mech 17:91–118CrossRef Davis RH, Acrivos A (1985) Sedimentation of noncolloidal particles at low reynolds numbers. Annu Rev Fluid Mech 17:91–118CrossRef
Zurück zum Zitat Dontsov EV, Peirce AP (2014a) The effect of proppant size on hydraulic fracturing by a slurry. Am Rock Mech Assoc Dontsov EV, Peirce AP (2014a) The effect of proppant size on hydraulic fracturing by a slurry. Am Rock Mech Assoc
Zurück zum Zitat Dontsov EV, Peirce AP (2014b) A new technique for proppant schedule design. Hydraul Fract J 1(3) Dontsov EV, Peirce AP (2014b) A new technique for proppant schedule design. Hydraul Fract J 1(3)
Zurück zum Zitat Dontsov EV, Peirce AP (2014c) Slurry flow, gravitational settling, and a proppant transport model for hydraulic fractures. J Fluid Mech 760:567–590CrossRef Dontsov EV, Peirce AP (2014c) Slurry flow, gravitational settling, and a proppant transport model for hydraulic fractures. J Fluid Mech 760:567–590CrossRef
Zurück zum Zitat Dontsov EV, Peirce AP (2015) Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models. Int J Solids Struct 63:206–218CrossRef Dontsov EV, Peirce AP (2015) Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models. Int J Solids Struct 63:206–218CrossRef
Zurück zum Zitat Economides MJ, Nolte KG (eds) (2000) Reservoir stimulation, 3rd edn. Wiley, Chichester Economides MJ, Nolte KG (eds) (2000) Reservoir stimulation, 3rd edn. Wiley, Chichester
Zurück zum Zitat Eskin D, Miller MJ (2008) A model of non-newtonian slurry flow in a fracture. Powder Technol 182:313–322CrossRef Eskin D, Miller MJ (2008) A model of non-newtonian slurry flow in a fracture. Powder Technol 182:313–322CrossRef
Zurück zum Zitat Gruesbeck C, Collins RE (1982) Particle transport through perforations. SPE 7006(22):857–865CrossRef Gruesbeck C, Collins RE (1982) Particle transport through perforations. SPE 7006(22):857–865CrossRef
Zurück zum Zitat Gu H, Desroches J (2003) New pump schedule generator for hydraulic fracturing treatment design. In: SPE Latin American and Caribbean petroleum engineering conference Gu H, Desroches J (2003) New pump schedule generator for hydraulic fracturing treatment design. In: SPE Latin American and Caribbean petroleum engineering conference
Zurück zum Zitat Healy DP, Young JB (2005) Full lagrangian methods for calculating particle concentration fields in dilute gas-particle flows. Proc R Soc A 461:2197–2225CrossRef Healy DP, Young JB (2005) Full lagrangian methods for calculating particle concentration fields in dilute gas-particle flows. Proc R Soc A 461:2197–2225CrossRef
Zurück zum Zitat Lecampion B, Garagash D (2014) Confined flow of suspensions modeled by a frictional rheology. J Fluid Mech 759:197–235CrossRef Lecampion B, Garagash D (2014) Confined flow of suspensions modeled by a frictional rheology. J Fluid Mech 759:197–235CrossRef
Zurück zum Zitat Mobbs AT, Hammond PS (2001) Computer simulations of proppant transport in a hydraulic fracture. SPE Prod Facil, pp 112–121 Mobbs AT, Hammond PS (2001) Computer simulations of proppant transport in a hydraulic fracture. SPE Prod Facil, pp 112–121
Zurück zum Zitat Nolte KG (1986) Determination of proppant and fluid schedules from fracturing-pressure decline. SPE Prod Eng 255–265 Nolte KG (1986) Determination of proppant and fluid schedules from fracturing-pressure decline. SPE Prod Eng 255–265
Zurück zum Zitat Patankar NA (2001) Lagrangian numerical simulation of particulate flows. Int J Multiph Flow 27:1685–1706CrossRef Patankar NA (2001) Lagrangian numerical simulation of particulate flows. Int J Multiph Flow 27:1685–1706CrossRef
Zurück zum Zitat Peirce A, Detournay E (2008) An implicit level set method for modeling hydraulically driven fractures. Comput Methods Appl Mech Eng 197:2858–2885CrossRef Peirce A, Detournay E (2008) An implicit level set method for modeling hydraulically driven fractures. Comput Methods Appl Mech Eng 197:2858–2885CrossRef
Zurück zum Zitat Shokir EM, Al-Quraishi AA (2007) Experimental and numerical investigation of proppant placement in hydraulic fractures. In: SPE Latin American and Caribbean petroleum engineering conference Shokir EM, Al-Quraishi AA (2007) Experimental and numerical investigation of proppant placement in hydraulic fractures. In: SPE Latin American and Caribbean petroleum engineering conference
Metadaten
Titel
A Lagrangian Approach to Modelling Proppant Transport with Tip Screen-Out in KGD Hydraulic Fractures
verfasst von
E. V. Dontsov
A. P. Peirce
Publikationsdatum
14.09.2015
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 6/2015
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-015-0835-6

Weitere Artikel der Ausgabe 6/2015

Rock Mechanics and Rock Engineering 6/2015 Zur Ausgabe