Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 6/2022

11.02.2022 | Original Paper

A Thermal–Mechanical Coupling Elastoplastic Model of Freeze–Thaw Deformation for Porous Rocks

verfasst von: Zhitao Lv, Sicheng Luo, Caichu Xia, Xiangtai Zeng

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Freeze–thaw (FT) damage and deformation of porous rocks would affect the normal operation or even threaten the safety of rock engineering in cold regions. During the FT process, pore ice pressure induced by temperature variation and phase change of pore water/ice would exceed the yield strength of rocks accompanied by the occurrence of plastic strain. Therefore, an effort that couples thermal mechanism and elastoplastic mechanical process is performed in the study to further understand the deformation process of porous rocks under FT condition. First, experiments on FT deformation of saturated sandstone with different freezing temperature are conducted. Four stages are observed in deformation variation process: thermal contraction stage, frost heaving stage for the freezing process, and thawing shrinkage stage, thermal expansion stage for the thawing process. Besides, significant residual strain remains after FT experiments implying the occurrence of irrecoverable plastic strain. Then, a thermal–mechanical coupling elastoplastic model of FT deformation for porous rocks is proposed, which couples the governing equations of heat transfer considering unfrozen water content and mechanical equilibrium equations based on the poro-elastoplastic approach. Comparisons between the results of thermal–mechanical numerical simulation based on the model and the experimental results show that the model can predict the temperature variation and FT deformation process of porous rocks with desirable accuracy. Moreover, as exhibited in the numerical results, during the freezing process, pore ice pressure increases dramatically as temperature decreases from 0 to  − 5 ℃. The plastic region generates at about − 2 ℃, and its increase rate is greater when the temperature is between − 2 and − 5 ℃. During the thawing process, although pore ice pressure eliminates in the region where the temperature becomes positive, the frost heaving strain there is not completely recovered as the plastic residual strain remains, which is consistent with the experimental phenomenon.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics. Wiley, ChichesterCrossRef Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics. Wiley, ChichesterCrossRef
Zurück zum Zitat Fen-Chong T, Fabbri A, Thiery M, Dangla P (2013) Poroelastic analysis of partial freezing in cohesive porous materials. J Appl Mech 80:020910. Fen-Chong T, Fabbri A, Thiery M, Dangla P (2013) Poroelastic analysis of partial freezing in cohesive porous materials. J Appl Mech 80:020910.
Zurück zum Zitat Jamshidi A, Nikudel M, Khamehchiyan M (2015) Estimating the engineering properties of building stones after freeze-thaw using multiple regression analysis. Iran J Sci Technol Trans A-Sci 39:147–163 Jamshidi A, Nikudel M, Khamehchiyan M (2015) Estimating the engineering properties of building stones after freeze-thaw using multiple regression analysis. Iran J Sci Technol Trans A-Sci 39:147–163
Zurück zum Zitat Matsuoka N (1990) Mechanisms of rock breakdown by frost action: an experimental approach. Cold Reg Sci Technol 17:253–270CrossRef Matsuoka N (1990) Mechanisms of rock breakdown by frost action: an experimental approach. Cold Reg Sci Technol 17:253–270CrossRef
Zurück zum Zitat Michalowski RL, Zhu M (2006) Frost heave modelling using porosity rate function. Int J Numer Anal Meth Geomech 30:703–722CrossRef Michalowski RL, Zhu M (2006) Frost heave modelling using porosity rate function. Int J Numer Anal Meth Geomech 30:703–722CrossRef
Zurück zum Zitat Yu H-S (2000) Cavity Expansion Methods in Geomechanics. Springer Science+Business Media, Berlin, Heidelberg. Yu H-S (2000) Cavity Expansion Methods in Geomechanics. Springer Science+Business Media, Berlin, Heidelberg.
Metadaten
Titel
A Thermal–Mechanical Coupling Elastoplastic Model of Freeze–Thaw Deformation for Porous Rocks
verfasst von
Zhitao Lv
Sicheng Luo
Caichu Xia
Xiangtai Zeng
Publikationsdatum
11.02.2022
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 6/2022
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-022-02794-y

Weitere Artikel der Ausgabe 6/2022

Rock Mechanics and Rock Engineering 6/2022 Zur Ausgabe