Skip to main content
Erschienen in: Acta Mechanica 3/2021

06.01.2021 | Original Paper

Dynamics of a delayed Duffing-type energy harvester under narrow-band random excitation

verfasst von: Yanfei Jin, Yanxia Zhang

Erschienen in: Acta Mechanica | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a Duffing-type energy harvester with time delay circuit under narrow-band random excitation is studied by using the method of multiple scales. The analytical expressions of the steady-state responses near the principal resonance and their stable conditions are derived. Results show that the phenomenon of stochastic jump is found, and the operational bandwidth of the nonlinear energy harvester can be extended. The effects of frequency detuning, noise intensity, time delay, piezoelectric coupling, and time constant ratio on the dynamical behaviors are discussed. From the viewpoint of improving system performance and optimizing harvester design, a proper choose of time delay and feedback gain is proposed by the power conversion efficiency and the RMS voltage. It indicates that the negative feedback gain is favorable for an energy harvester to provide more electrical output power and miniaturize design. Moreover, the Monte Carlo simulations are given to verify the validity of the theoretical method.
Literatur
1.
Zurück zum Zitat Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2004)CrossRef Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2004)CrossRef
2.
Zurück zum Zitat Lumentut, M.F., Howard, I.M.: Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks. Acta Mech. 228, 1321–1341 (2017)CrossRef Lumentut, M.F., Howard, I.M.: Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks. Acta Mech. 228, 1321–1341 (2017)CrossRef
3.
Zurück zum Zitat Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., Green, T.C.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115, 523–529 (2004)CrossRef Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., Green, T.C.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115, 523–529 (2004)CrossRef
4.
Zurück zum Zitat Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)CrossRef Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)CrossRef
5.
Zurück zum Zitat Jiang, W.A., Chen, L.Q.: Energy harvesting of monostable Duffing oscillator under Gaussian white noise excitation. Mech. Res. Commun. 53, 85–91 (2013)CrossRef Jiang, W.A., Chen, L.Q.: Energy harvesting of monostable Duffing oscillator under Gaussian white noise excitation. Mech. Res. Commun. 53, 85–91 (2013)CrossRef
6.
Zurück zum Zitat Xiao, S.M., Jin, Y.F.: Response analysis of the piezoelectric energy harvester under correlated white noise. Nonlinear Dyn. 90, 2069–2082 (2017)CrossRef Xiao, S.M., Jin, Y.F.: Response analysis of the piezoelectric energy harvester under correlated white noise. Nonlinear Dyn. 90, 2069–2082 (2017)CrossRef
7.
Zurück zum Zitat Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329, 1215–1226 (2010)CrossRef Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329, 1215–1226 (2010)CrossRef
8.
Zurück zum Zitat Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)CrossRef Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)CrossRef
9.
Zurück zum Zitat Zhou, S.X., Cao, J.Y., Inman, D.J., Lin, J., Liu, S.S., Wang, Z.Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)CrossRef Zhou, S.X., Cao, J.Y., Inman, D.J., Lin, J., Liu, S.S., Wang, Z.Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)CrossRef
10.
Zurück zum Zitat Kim, P., Seok, J.: A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333, 5525–5547 (2014)CrossRef Kim, P., Seok, J.: A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333, 5525–5547 (2014)CrossRef
11.
Zurück zum Zitat Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)CrossRef Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)CrossRef
12.
Zurück zum Zitat Pasharavesh, A., Ahmadian, M.T., Zohoor, H.: On the energy extraction from large amplitude vibrations of MEMS-based piezoelectric harvesters. Acta Mech. 228, 3445–3468 (2017)MathSciNetCrossRef Pasharavesh, A., Ahmadian, M.T., Zohoor, H.: On the energy extraction from large amplitude vibrations of MEMS-based piezoelectric harvesters. Acta Mech. 228, 3445–3468 (2017)MathSciNetCrossRef
13.
Zurück zum Zitat Chen, L.Q., Jiang, W.A., Panyam, M., Daqaq, M.F.: A broadband internally-resonant vibratory energy harvester. J. Vib. Acoust. 138, 061007 (2016)CrossRef Chen, L.Q., Jiang, W.A., Panyam, M., Daqaq, M.F.: A broadband internally-resonant vibratory energy harvester. J. Vib. Acoust. 138, 061007 (2016)CrossRef
14.
Zurück zum Zitat Tang, L., Wang, J.: Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier. Acta Mech. 229, 4643–4662 (2018)MathSciNetCrossRef Tang, L., Wang, J.: Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier. Acta Mech. 229, 4643–4662 (2018)MathSciNetCrossRef
15.
Zurück zum Zitat Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)CrossRef Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)CrossRef
16.
Zurück zum Zitat Jiang, W.A., Chen, L.Q.: An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise. Commun. Nonlinear Sci. Numer. Simul. 19, 2897–2904 (2014)CrossRef Jiang, W.A., Chen, L.Q.: An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise. Commun. Nonlinear Sci. Numer. Simul. 19, 2897–2904 (2014)CrossRef
17.
Zurück zum Zitat Jin, X.L., Wang, Y., Xu, M., Huang, Z.L.: Semi-analytical solution of random response for nonlinear vibration energy harvesters. J. Sound Vib. 340, 267–282 (2015)CrossRef Jin, X.L., Wang, Y., Xu, M., Huang, Z.L.: Semi-analytical solution of random response for nonlinear vibration energy harvesters. J. Sound Vib. 340, 267–282 (2015)CrossRef
18.
Zurück zum Zitat Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2554–2564 (2011)CrossRef Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2554–2564 (2011)CrossRef
19.
Zurück zum Zitat Xu, M., Jin, X.L., Wang, Y., Huang, Z.L.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78, 1451–1459 (2014)MathSciNetCrossRef Xu, M., Jin, X.L., Wang, Y., Huang, Z.L.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78, 1451–1459 (2014)MathSciNetCrossRef
20.
Zurück zum Zitat Zhu, W.Q., Lin, Y.K.: Stochastic averaging of energy envelope. ASCE J. Eng. Mech. 117, 1890–1905 (1991)CrossRef Zhu, W.Q., Lin, Y.K.: Stochastic averaging of energy envelope. ASCE J. Eng. Mech. 117, 1890–1905 (1991)CrossRef
21.
Zurück zum Zitat Bobryk, R.V., Yurchenko, D.: On enhancement of vibration-based energy harvesting by a random parametric excitation. J. Sound Vib. 366, 407–417 (2016)CrossRef Bobryk, R.V., Yurchenko, D.: On enhancement of vibration-based energy harvesting by a random parametric excitation. J. Sound Vib. 366, 407–417 (2016)CrossRef
22.
Zurück zum Zitat Liu, D., Xu, Y., Li, J.: Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos, Solitons, Fractals 104, 806–817 (2017)CrossRef Liu, D., Xu, Y., Li, J.: Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos, Solitons, Fractals 104, 806–817 (2017)CrossRef
23.
Zurück zum Zitat Zhang, Y.X., Jin, Y.F.: Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dyn. 98, 501–515 (2019)CrossRef Zhang, Y.X., Jin, Y.F.: Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dyn. 98, 501–515 (2019)CrossRef
24.
Zurück zum Zitat Zhang, Y.X., Jin, Y.F., Xu, P.F., Xiao, S.M.: Stochastic bifurcations in a nonlinear tri-stable energy harvester under colored noise. Nonlinear Dyn. 99, 879–897 (2020)CrossRef Zhang, Y.X., Jin, Y.F., Xu, P.F., Xiao, S.M.: Stochastic bifurcations in a nonlinear tri-stable energy harvester under colored noise. Nonlinear Dyn. 99, 879–897 (2020)CrossRef
25.
Zurück zum Zitat Zhang, Y.X., Jin, Y.F., Xu, P.F.: Dynamics of a coupled nonlinear energy harvester under colored noise and periodic excitations. Int. J. Mech. Sci. 172, 105418 (2020)CrossRef Zhang, Y.X., Jin, Y.F., Xu, P.F.: Dynamics of a coupled nonlinear energy harvester under colored noise and periodic excitations. Int. J. Mech. Sci. 172, 105418 (2020)CrossRef
26.
Zurück zum Zitat Ahlborn, A., Parlitz, U.: Stabilizing unstable steady states using multiple delay feedback control. Phys. Rev. Letts. 93, 264101 (2004)CrossRef Ahlborn, A., Parlitz, U.: Stabilizing unstable steady states using multiple delay feedback control. Phys. Rev. Letts. 93, 264101 (2004)CrossRef
27.
Zurück zum Zitat Hu, H.Y., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15, 311–327 (1998)CrossRef Hu, H.Y., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15, 311–327 (1998)CrossRef
28.
Zurück zum Zitat Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Heidelberg (2002)CrossRef Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Heidelberg (2002)CrossRef
29.
Zurück zum Zitat Balanov, A.G., Janson, N.B., Schöll, E.: Delayed feedback control of chaos: bifurcation analysis. Phys. Rev. E 71, 016222 (2005)CrossRef Balanov, A.G., Janson, N.B., Schöll, E.: Delayed feedback control of chaos: bifurcation analysis. Phys. Rev. E 71, 016222 (2005)CrossRef
30.
Zurück zum Zitat Park, S., Lee, C., Kim, H., Yun, H., Kwon, S.: Development of piezoelectric energy harvesting modules for impedance-based wireless structural health monitoring system. KSCE J. Civ. Eng. 17, 746–752 (2013)CrossRef Park, S., Lee, C., Kim, H., Yun, H., Kwon, S.: Development of piezoelectric energy harvesting modules for impedance-based wireless structural health monitoring system. KSCE J. Civ. Eng. 17, 746–752 (2013)CrossRef
31.
Zurück zum Zitat Belhaq, M., Ghouli, Z., Hamdi, M.: Energy harvesting in a Mathieu-van der Pol-Duffing MEMS device using time delay. Nonlinear Dyn. 94, 2537–2546 (2018)CrossRef Belhaq, M., Ghouli, Z., Hamdi, M.: Energy harvesting in a Mathieu-van der Pol-Duffing MEMS device using time delay. Nonlinear Dyn. 94, 2537–2546 (2018)CrossRef
32.
Zurück zum Zitat Ghouli, Z., Hamdi, M., Belhaq, M.: Improving energy harvesting in excited Duffing harvester device using a delayed piezoelectric coupling. MATEC Web of Conf. 241, 01010 (2018)CrossRef Ghouli, Z., Hamdi, M., Belhaq, M.: Improving energy harvesting in excited Duffing harvester device using a delayed piezoelectric coupling. MATEC Web of Conf. 241, 01010 (2018)CrossRef
33.
Zurück zum Zitat Alhazza, K.A., Nayfeh, A.H., Daqaq, M.F.: On utilizing delayed feedback for active-multimode vibration control of cantilever beams. J. Sound Vib. 319, 735–752 (2009)CrossRef Alhazza, K.A., Nayfeh, A.H., Daqaq, M.F.: On utilizing delayed feedback for active-multimode vibration control of cantilever beams. J. Sound Vib. 319, 735–752 (2009)CrossRef
34.
Zurück zum Zitat Yang, T., Cao, Q.J.: Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dyn. 96, 1511–1530 (2019)CrossRef Yang, T., Cao, Q.J.: Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dyn. 96, 1511–1530 (2019)CrossRef
35.
Zurück zum Zitat Guo, Q., Sun, Z.K., Zhang, Y., Xu, W.: Time-delayed feedback control in the multiple attractors wind-induced vibration energy harvesting system. Complexity 2019, 1–11 (2019) Guo, Q., Sun, Z.K., Zhang, Y., Xu, W.: Time-delayed feedback control in the multiple attractors wind-induced vibration energy harvesting system. Complexity 2019, 1–11 (2019)
36.
Zurück zum Zitat Zhang, S.L., Zhang, Y., Sun, Z.K., Duan, X.X.: Dynamics of a nonlinear energy harvesting system in time-delayed feedback control under stochastic excitations. Complexity 2020, 1–9 (2020) Zhang, S.L., Zhang, Y., Sun, Z.K., Duan, X.X.: Dynamics of a nonlinear energy harvesting system in time-delayed feedback control under stochastic excitations. Complexity 2020, 1–9 (2020)
37.
Zurück zum Zitat Wedig, W.V.: Invariant measures and Lyapunov exponents for generalized parameter fluctuations. Struct. Saf. 8, 13–25 (1990)CrossRef Wedig, W.V.: Invariant measures and Lyapunov exponents for generalized parameter fluctuations. Struct. Saf. 8, 13–25 (1990)CrossRef
38.
Zurück zum Zitat Davies, H.G., Liu, Q.: The response envelope probability density function of a Duffing oscillator with random narrow-band excitation. J. Sound Vib. 139, 1–8 (1990)MathSciNetCrossRef Davies, H.G., Liu, Q.: The response envelope probability density function of a Duffing oscillator with random narrow-band excitation. J. Sound Vib. 139, 1–8 (1990)MathSciNetCrossRef
39.
Zurück zum Zitat Fang, T., Dowell, E.H.: Numerical simulations of jump phenomena in stable Duffing systems. Int. J. Nonlin. Mech. 22, 267–274 (1987)MathSciNetCrossRef Fang, T., Dowell, E.H.: Numerical simulations of jump phenomena in stable Duffing systems. Int. J. Nonlin. Mech. 22, 267–274 (1987)MathSciNetCrossRef
40.
Zurück zum Zitat Shinozuka, M., Jan, C.M.: Digital simulation of random processes and its applications. J. Sound Vib. 25, 111–128 (1972)CrossRef Shinozuka, M., Jan, C.M.: Digital simulation of random processes and its applications. J. Sound Vib. 25, 111–128 (1972)CrossRef
Metadaten
Titel
Dynamics of a delayed Duffing-type energy harvester under narrow-band random excitation
verfasst von
Yanfei Jin
Yanxia Zhang
Publikationsdatum
06.01.2021
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2021
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02877-3

Weitere Artikel der Ausgabe 3/2021

Acta Mechanica 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.