Skip to main content
Erschienen in: Acta Mechanica 10/2021

12.08.2021 | Original Paper

Compression behavior of FCC- and BCB-architected materials: theoretical and numerical analysis

verfasst von: Jianqiang Deng, Xin Li, Zhifang Liu, Zhihua Wang, Shiqiang Li

Erschienen in: Acta Mechanica | Ausgabe 10/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this work is to investigate the mechanical behavior of architected materials mimicking a crystal microstructure. The initial collapse strength of the architected materials is predicted by limit analysis, and the post-collapse response is theoretically obtained, considering the elastic effect and large deformation. The unit cell of body-centered block (BCB)-architected materials is defined using two parameters: the angle \(\gamma_{0}\) between the diagonal strut of the block and horizontal plane and the angle \(\varphi\) between the diagonal and the hem of the horizontal plane. The results reveal that the initial collapse strength of the BCB under statically admissible fields is the same as that under the kinematically admissible field. The stress–strain curve of the BCB with smaller angle \(\gamma_{0}\) possesses a plateau whose value is almost the same as the initial collapse strength. The BCB with larger angle \(\gamma_{0}\) has a larger initial collapse strength; however, they exhibit a significant decline of post-collapse response during compression, which means that the transition of the deformation mechanism of BCB may occur in the angle range (35º, 40º). The stress–strain curve of the face-centered cubic (FCC)-architected materials generally features a sharp drop after a peak, without a plateau. A detailed finite simulation was carried out to verify the analytical model results.
Literatur
1.
Zurück zum Zitat Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge (1997)CrossRef Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge (1997)CrossRef
2.
Zurück zum Zitat Pham, M.-S., Liu, C., Todd, I., Lertthanasarn, J.: Damage-tolerant architected materials inspired by crystal microstructure. Nature 565, 305–311 (2019)CrossRef Pham, M.-S., Liu, C., Todd, I., Lertthanasarn, J.: Damage-tolerant architected materials inspired by crystal microstructure. Nature 565, 305–311 (2019)CrossRef
3.
Zurück zum Zitat Fleck N.A., Deshpande V.S., Ashby M.F.: Micro-architected materials: past, present and future. In: proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 2495–2516 (2010) Fleck N.A., Deshpande V.S., Ashby M.F.: Micro-architected materials: past, present and future. In: proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 2495–2516 (2010)
4.
Zurück zum Zitat Deshpande, V.S., Ashby, M.F., Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta. Mater. 49, 1035–1040 (2001)CrossRef Deshpande, V.S., Ashby, M.F., Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta. Mater. 49, 1035–1040 (2001)CrossRef
5.
Zurück zum Zitat Papka, S.D., Kyriakides, S.: In-plane compressive response and crushing of honeycomb. J. Mech. Phys Solids 42(10), 1499–1532 (1994)CrossRef Papka, S.D., Kyriakides, S.: In-plane compressive response and crushing of honeycomb. J. Mech. Phys Solids 42(10), 1499–1532 (1994)CrossRef
6.
Zurück zum Zitat Gioux, G., McCormack, T.M., Gibson, L.J.: Failure of aluminum foams under multiaxial loads. Int. J. Mech. Sci. 42(6), 1097–1117 (2000)CrossRef Gioux, G., McCormack, T.M., Gibson, L.J.: Failure of aluminum foams under multiaxial loads. Int. J. Mech. Sci. 42(6), 1097–1117 (2000)CrossRef
7.
Zurück zum Zitat Yu, J.L., Li, J.R., Hu, S.S.: Strain-rate effect and micro-structural optimization of cellular metals. Mech. Mater. 38(1), 160–170 (2006)CrossRef Yu, J.L., Li, J.R., Hu, S.S.: Strain-rate effect and micro-structural optimization of cellular metals. Mech. Mater. 38(1), 160–170 (2006)CrossRef
8.
Zurück zum Zitat Shafiq, M., Ayyagari, R.S., Ehaab, M., et al.: Multiaxial yield surface of transversely isotropic foams: part II-experimental. J. Mech. Phys Solids 76, 224–236 (2015)CrossRef Shafiq, M., Ayyagari, R.S., Ehaab, M., et al.: Multiaxial yield surface of transversely isotropic foams: part II-experimental. J. Mech. Phys Solids 76, 224–236 (2015)CrossRef
9.
Zurück zum Zitat Fang, Q., Zhang, J., Zhang, Y., et al.: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Compos. Struct. 124, 409–420 (2015)CrossRef Fang, Q., Zhang, J., Zhang, Y., et al.: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Compos. Struct. 124, 409–420 (2015)CrossRef
10.
Zurück zum Zitat Bonatti, C., Mohr, D.: Large deformation response of additively-manufactured FCC metamaterials: From octet truss lattices towards continuous shell mesostructures. Int. J. Plast 92, 122–147 (2017)CrossRef Bonatti, C., Mohr, D.: Large deformation response of additively-manufactured FCC metamaterials: From octet truss lattices towards continuous shell mesostructures. Int. J. Plast 92, 122–147 (2017)CrossRef
11.
Zurück zum Zitat Fuller, R. B.: Octet truss. US Patent Serial No 2, 986, 241 (1961) Fuller, R. B.: Octet truss. US Patent Serial No 2, 986, 241 (1961)
12.
Zurück zum Zitat Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001)CrossRef Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001)CrossRef
13.
Zurück zum Zitat Mohr, D.: Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int. J. Solids Struct. 45, 478–496 (2005)MATH Mohr, D.: Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int. J. Solids Struct. 45, 478–496 (2005)MATH
14.
Zurück zum Zitat Vigliotti, A., Deshpande, V.S., Pasini, D.: Nonlinear constitutive models for lattice materials. J. Mech. Phys. Solids 64, 44–60 (2014)MathSciNetCrossRef Vigliotti, A., Deshpande, V.S., Pasini, D.: Nonlinear constitutive models for lattice materials. J. Mech. Phys. Solids 64, 44–60 (2014)MathSciNetCrossRef
15.
Zurück zum Zitat He, Z., Wang, F., Zhu, Y., Wu, H., Park, H.S.: Mechanical properties of copper octet-truss nanolattices. J. Mech. Phys. Solids 101, 133–149 (2017)CrossRef He, Z., Wang, F., Zhu, Y., Wu, H., Park, H.S.: Mechanical properties of copper octet-truss nanolattices. J. Mech. Phys. Solids 101, 133–149 (2017)CrossRef
16.
Zurück zum Zitat Ushijima, K., Cantwell, W.J., Mines, R., Tsopanos, S., Smith, M.: An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandwich Struct. Mater. 13(3), 303–329 (2010)CrossRef Ushijima, K., Cantwell, W.J., Mines, R., Tsopanos, S., Smith, M.: An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandwich Struct. Mater. 13(3), 303–329 (2010)CrossRef
17.
Zurück zum Zitat Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)CrossRef Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)CrossRef
18.
Zurück zum Zitat Gümrük, R., Mines, R.A.W.: Compressive behaviour of stainless steel micro-lattice structures. Int J. Mech. Sci. 68, 125–139 (2013)CrossRef Gümrük, R., Mines, R.A.W.: Compressive behaviour of stainless steel micro-lattice structures. Int J. Mech. Sci. 68, 125–139 (2013)CrossRef
19.
Zurück zum Zitat Lee, K.-W., Lee, S.-H., Noh, K.-H., Park, J.-Y., Cho, Y.-J., Kim, S.-H.: Theoretical and numerical analysis of the mechanical response of BCC and FCC lattice structures. J. Mech. Sci. Technol. 35(5), 2259–2266 (2019)CrossRef Lee, K.-W., Lee, S.-H., Noh, K.-H., Park, J.-Y., Cho, Y.-J., Kim, S.-H.: Theoretical and numerical analysis of the mechanical response of BCC and FCC lattice structures. J. Mech. Sci. Technol. 35(5), 2259–2266 (2019)CrossRef
20.
Zurück zum Zitat Ruan, D., Lu, G., Wang, B., Yu, T.X.: In-plane dynamic crushing of honeycombs-a finite element study. Int. J. Impact Eng. 28(2), 161–182 (2003)CrossRef Ruan, D., Lu, G., Wang, B., Yu, T.X.: In-plane dynamic crushing of honeycombs-a finite element study. Int. J. Impact Eng. 28(2), 161–182 (2003)CrossRef
21.
Zurück zum Zitat Tancogne-Dejean, T., Spierings, A.B., Mohr, D.: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta. Mater. 116, 14–28 (2016)CrossRef Tancogne-Dejean, T., Spierings, A.B., Mohr, D.: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta. Mater. 116, 14–28 (2016)CrossRef
22.
Zurück zum Zitat Tancogne-Dejean, T., Mohr, D.: Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. Int. J. Mech. Sci. 141, 101–116 (2018)CrossRef Tancogne-Dejean, T., Mohr, D.: Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. Int. J. Mech. Sci. 141, 101–116 (2018)CrossRef
23.
Zurück zum Zitat Sha, Y., Jiani, L., Haoyu, C., Robert, O.R., Jun, X.: Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing. Int. J. Mech. Sci. 149, 150–163 (2018)CrossRef Sha, Y., Jiani, L., Haoyu, C., Robert, O.R., Jun, X.: Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing. Int. J. Mech. Sci. 149, 150–163 (2018)CrossRef
24.
Zurück zum Zitat Carlton, H.D., Lind, J., Messner, M.C., Volkoff-Shoemaker, N.A., Barnard, H.S., Barton, N.R., Kumar, M.: Mapping local deformation behavior in single cell metal lattice structures. Acta. Mater. 129, 239–250 (2017)CrossRef Carlton, H.D., Lind, J., Messner, M.C., Volkoff-Shoemaker, N.A., Barnard, H.S., Barton, N.R., Kumar, M.: Mapping local deformation behavior in single cell metal lattice structures. Acta. Mater. 129, 239–250 (2017)CrossRef
25.
Zurück zum Zitat Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part I: Quasi-static strength predicted by limit analysis. Int. J. Impact Eng 36, 1223–1230 (2009)CrossRef Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part I: Quasi-static strength predicted by limit analysis. Int. J. Impact Eng 36, 1223–1230 (2009)CrossRef
26.
Zurück zum Zitat Calladine, C.R., English, R.W.: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26, 689–701 (1984)CrossRef Calladine, C.R., English, R.W.: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26, 689–701 (1984)CrossRef
27.
Zurück zum Zitat Jing, L., Wang, Z., Zhao, L.: An approximate theoretical analysis for clamped cylindrical sandwich shells with metallic foam cores subjected to impulsive loading. Compos. B 60, 150–157 (2014)CrossRef Jing, L., Wang, Z., Zhao, L.: An approximate theoretical analysis for clamped cylindrical sandwich shells with metallic foam cores subjected to impulsive loading. Compos. B 60, 150–157 (2014)CrossRef
28.
Zurück zum Zitat Li, Q.M., Magkiriadis, I., Harrigan, J.J.: Compressive strain at onset of densification of cellular solids. J. Cell. Plast. 42, 371–392 (2006)CrossRef Li, Q.M., Magkiriadis, I., Harrigan, J.J.: Compressive strain at onset of densification of cellular solids. J. Cell. Plast. 42, 371–392 (2006)CrossRef
29.
Zurück zum Zitat Gao, Z.Y., Yu, T.X., Lu, G.: A study on type II structures Part I: a modified one-dimensional mass-spring model. Int. J. Impact Eng. 31, 895–910 (2005) Gao, Z.Y., Yu, T.X., Lu, G.: A study on type II structures Part I: a modified one-dimensional mass-spring model. Int. J. Impact Eng. 31, 895–910 (2005)
Metadaten
Titel
Compression behavior of FCC- and BCB-architected materials: theoretical and numerical analysis
verfasst von
Jianqiang Deng
Xin Li
Zhifang Liu
Zhihua Wang
Shiqiang Li
Publikationsdatum
12.08.2021
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 10/2021
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-021-02953-2

Weitere Artikel der Ausgabe 10/2021

Acta Mechanica 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.