Skip to main content
Erschienen in: Acta Mechanica 1/2022

07.01.2022 | Original Paper

A new method for suppressing nonlinear flutter and thermal buckling of composite lattice sandwich beams

verfasst von: Yuyang Chai, Fengming Li, Chuanzeng Zhang

Erschienen in: Acta Mechanica | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pre-stresses or axial loadings induced by deformations of adjacent structures, edge constraints or mounting inaccuracies and elastic supporting components attached to one side of the sandwich structures may affect the aerothermoelastic stability, which is an important subject in the design of supersonic aircraft. Therefore, the nonlinear flutter and thermal buckling behavior of composite lattice sandwich beams with translational springs under axial loading in supersonic airflow is investigated in this paper. In the structural modeling, the von Kármán large-deflection theory is applied to establish the stain–displacement relations. The aerodynamic pressure is evaluated by the supersonic piston theory. The differential equations of motion are obtained by Hamilton’s principle and the assumed mode method. The highlight of this study is that a new approach for limit cycle oscillation (LCO) suppression and thermal buckling elimination without changing the stiffness of the lattice sandwich structure is proposed by utilizing the axial loading and translational springs. The structural natural frequencies are obtained and compared with reference results in the literature. The influences of the axial loading and the translational springs on the nonlinear supersonic flutter and thermal buckling properties of the sandwich beams are analyzed. Numerical results indicate that the present method is effective for nonlinear flutter suppression, and the thermal buckling effect can be completely eliminated by adjusting the axial loading of the sandwich beams.
Literatur
1.
Zurück zum Zitat Liu, T., Deng, Z.C., Lu, T.J.: Analytical modeling and finite element simulation of the plastic collapse of sandwich beams with pin-reinforced foam cores. Int. J. Solids Struct. 45, 5127–5151 (2008)MATHCrossRef Liu, T., Deng, Z.C., Lu, T.J.: Analytical modeling and finite element simulation of the plastic collapse of sandwich beams with pin-reinforced foam cores. Int. J. Solids Struct. 45, 5127–5151 (2008)MATHCrossRef
2.
Zurück zum Zitat Zhang, J., Ye, Y., Qin, Q.: Large deflections of multilayer sandwich beams with metal foam cores under transverse loading. Acta Mech. 229(9), 3585–3599 (2018)MathSciNetCrossRef Zhang, J., Ye, Y., Qin, Q.: Large deflections of multilayer sandwich beams with metal foam cores under transverse loading. Acta Mech. 229(9), 3585–3599 (2018)MathSciNetCrossRef
3.
Zurück zum Zitat Xu, G.D., Wang, Z.H., Zeng, T., Cheng, S., Fang, D.N.: Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Compos. Sci. Technol. 156, 296–304 (2018)CrossRef Xu, G.D., Wang, Z.H., Zeng, T., Cheng, S., Fang, D.N.: Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Compos. Sci. Technol. 156, 296–304 (2018)CrossRef
4.
Zurück zum Zitat Yang, J.S., Ma, L., Chaves-Vargas, M., Huang, T.X., Schröder, K.U., Schmidt, R., Wu, L.Z.: Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels. Compos. Sci. Technol. 147, 89–99 (2017)CrossRef Yang, J.S., Ma, L., Chaves-Vargas, M., Huang, T.X., Schröder, K.U., Schmidt, R., Wu, L.Z.: Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels. Compos. Sci. Technol. 147, 89–99 (2017)CrossRef
5.
Zurück zum Zitat Thamburaj, P., Sun, J.Q.: Effect of material and geometry on the sound and vibration transmission across a sandwich beam. J. Vib. Acoust. 123(2), 205–212 (2001)CrossRef Thamburaj, P., Sun, J.Q.: Effect of material and geometry on the sound and vibration transmission across a sandwich beam. J. Vib. Acoust. 123(2), 205–212 (2001)CrossRef
6.
Zurück zum Zitat Chandra, N., Gopal, K.V.N., Raja, S.: Vibro-acoustic response of sandwich plates with functionally graded core. Acta Mech. 228(8), 2775–2789 (2017)MathSciNetMATHCrossRef Chandra, N., Gopal, K.V.N., Raja, S.: Vibro-acoustic response of sandwich plates with functionally graded core. Acta Mech. 228(8), 2775–2789 (2017)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Yuan, W., Song, H.W., Wang, X., Huang, C.G.: Experimental investigation on thermal buckling behavior of truss-core sandwich panels. AIAA J. 53(4), 948–957 (2014)CrossRef Yuan, W., Song, H.W., Wang, X., Huang, C.G.: Experimental investigation on thermal buckling behavior of truss-core sandwich panels. AIAA J. 53(4), 948–957 (2014)CrossRef
8.
Zurück zum Zitat Chai, Y., Du, S., Li, F., Zhang, C.: Vibration characteristics of simply supported pyramidal lattice sandwich plates on elastic foundation: Theory and experiments. Thin-Walled Struct. 166, 108116 (2021)CrossRef Chai, Y., Du, S., Li, F., Zhang, C.: Vibration characteristics of simply supported pyramidal lattice sandwich plates on elastic foundation: Theory and experiments. Thin-Walled Struct. 166, 108116 (2021)CrossRef
9.
Zurück zum Zitat Shiau, L.C., Kuo, S.Y.: Free vibration of thermally buckled composite sandwich plates. J. Vib. Acoust. 128(1), 1–7 (2006)CrossRef Shiau, L.C., Kuo, S.Y.: Free vibration of thermally buckled composite sandwich plates. J. Vib. Acoust. 128(1), 1–7 (2006)CrossRef
10.
Zurück zum Zitat Bhangale, R.K., Ganesan, N.: Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. J. Sound Vib. 295, 294–316 (2006)CrossRef Bhangale, R.K., Ganesan, N.: Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. J. Sound Vib. 295, 294–316 (2006)CrossRef
11.
Zurück zum Zitat Kiani, Y.: Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. J. Therm. Stresses 39(9), 1098–1110 (2016)CrossRef Kiani, Y.: Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. J. Therm. Stresses 39(9), 1098–1110 (2016)CrossRef
12.
Zurück zum Zitat Li, C., Shen, H.S., Wang, H.: Thermal post-buckling of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Int. J. Mech. Sci. 152, 289–297 (2019)CrossRef Li, C., Shen, H.S., Wang, H.: Thermal post-buckling of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Int. J. Mech. Sci. 152, 289–297 (2019)CrossRef
13.
Zurück zum Zitat Iurlaro, L., Ascione, A., Gherlone, M., Mattone, M., Sciuva, M.D.: Free vibration analysis of sandwich beams using the Refined Zigzag Theory: An experimental assessment. Meccanica 50(10), 2525–2535 (2015)CrossRef Iurlaro, L., Ascione, A., Gherlone, M., Mattone, M., Sciuva, M.D.: Free vibration analysis of sandwich beams using the Refined Zigzag Theory: An experimental assessment. Meccanica 50(10), 2525–2535 (2015)CrossRef
14.
Zurück zum Zitat Yao, G., Li, F.M.: Nonlinear primary resonances of lattice sandwich beams with pyramidal truss core and viscoelastic surfaces. Acta Mech. 229(10), 4091–4100 (2018)MathSciNetMATHCrossRef Yao, G., Li, F.M.: Nonlinear primary resonances of lattice sandwich beams with pyramidal truss core and viscoelastic surfaces. Acta Mech. 229(10), 4091–4100 (2018)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Structures 107, 39–48 (2016)CrossRef Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Structures 107, 39–48 (2016)CrossRef
16.
Zurück zum Zitat Alambeigi, K., Mohammadimehr, M., Bamdad, M., Rabczuk, T.: Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation. Acta Mech. 231, 3199–3218 (2020)MathSciNetCrossRef Alambeigi, K., Mohammadimehr, M., Bamdad, M., Rabczuk, T.: Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation. Acta Mech. 231, 3199–3218 (2020)MathSciNetCrossRef
17.
Zurück zum Zitat Farsadi, T., Asadi, D., Kurtaran, H.: Nonlinear flutter response of a composite plate applying curvilinear fiber paths. Acta Mech. 231(2), 715–731 (2020)MathSciNetCrossRef Farsadi, T., Asadi, D., Kurtaran, H.: Nonlinear flutter response of a composite plate applying curvilinear fiber paths. Acta Mech. 231(2), 715–731 (2020)MathSciNetCrossRef
18.
Zurück zum Zitat Zappino, E., Carrera, E., Cinefra, M.: Aeroelastic analysis of composite pinched panels using higher-order shell elements. J. Spacecr. Rocket. 52(3), 999–1003 (2015)CrossRef Zappino, E., Carrera, E., Cinefra, M.: Aeroelastic analysis of composite pinched panels using higher-order shell elements. J. Spacecr. Rocket. 52(3), 999–1003 (2015)CrossRef
19.
Zurück zum Zitat Li, F.M., Song, Z.G., Sun, C.C.: Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow. Acta Mech. Solida Sin. 28(6), 639–646 (2015)CrossRef Li, F.M., Song, Z.G., Sun, C.C.: Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow. Acta Mech. Solida Sin. 28(6), 639–646 (2015)CrossRef
20.
Zurück zum Zitat Khorshidi, K., Karimi, M., Amabili, M.: Aeroelastic analysis of rectangular plates coupled to sloshing fluid. Acta Mech. 231, 3183–3198 (2020)MathSciNetMATHCrossRef Khorshidi, K., Karimi, M., Amabili, M.: Aeroelastic analysis of rectangular plates coupled to sloshing fluid. Acta Mech. 231, 3183–3198 (2020)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Amabili, M., Pellicano, F.: Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shells. J. Appl. Mech. 69(2), 117–129 (2002)MATHCrossRef Amabili, M., Pellicano, F.: Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shells. J. Appl. Mech. 69(2), 117–129 (2002)MATHCrossRef
22.
Zurück zum Zitat Amabili, M., Pellicano, F.: Nonlinear supersonic flutter of circular cylindrical shells. AIAA J. 39(4), 564–573 (2001)MATHCrossRef Amabili, M., Pellicano, F.: Nonlinear supersonic flutter of circular cylindrical shells. AIAA J. 39(4), 564–573 (2001)MATHCrossRef
23.
Zurück zum Zitat Mousavi, S.B., Yazdi, A.A.: Flutter of delaminated three-phase nano-composite beam-plates. Mech. Adv. Mater. Struct. 27(7), 561–568 (2020)CrossRef Mousavi, S.B., Yazdi, A.A.: Flutter of delaminated three-phase nano-composite beam-plates. Mech. Adv. Mater. Struct. 27(7), 561–568 (2020)CrossRef
24.
Zurück zum Zitat Yang, X.D., Yu, T.J., Zhang, W., Qian, Y.J., Yao, M.H.: Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer. Compos. Struct. 137, 105–113 (2016)CrossRef Yang, X.D., Yu, T.J., Zhang, W., Qian, Y.J., Yao, M.H.: Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer. Compos. Struct. 137, 105–113 (2016)CrossRef
25.
Zurück zum Zitat Chai, Y., Li, F., Song, Z., Zhang, C.: Influence of the boundary relaxation on the flutter and thermal buckling of composite laminated panels. Aerospace Sci. Technol. 104, 106000 (2020)CrossRef Chai, Y., Li, F., Song, Z., Zhang, C.: Influence of the boundary relaxation on the flutter and thermal buckling of composite laminated panels. Aerospace Sci. Technol. 104, 106000 (2020)CrossRef
26.
Zurück zum Zitat Asadi, H., Beheshti, A.R.: On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory. Acta Mech. 229(6), 2413–2430 (2018)MathSciNetMATHCrossRef Asadi, H., Beheshti, A.R.: On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory. Acta Mech. 229(6), 2413–2430 (2018)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Chai, Y.Y., Li, F.M., Song, Z.G.: Nonlinear flutter suppression and thermal buckling elimination for composite lattice sandwich panels. AIAA J. 57(11), 4863–4872 (2019)CrossRef Chai, Y.Y., Li, F.M., Song, Z.G.: Nonlinear flutter suppression and thermal buckling elimination for composite lattice sandwich panels. AIAA J. 57(11), 4863–4872 (2019)CrossRef
28.
Zurück zum Zitat Zhou, K., Huang, X.C., Zhang, Z.G., Hua, H.X.: Aero-thermo-elastic flutter analysis of coupled plate structures in supersonic flow with general boundary conditions. J. Sound Vib. 430, 36–58 (2018)CrossRef Zhou, K., Huang, X.C., Zhang, Z.G., Hua, H.X.: Aero-thermo-elastic flutter analysis of coupled plate structures in supersonic flow with general boundary conditions. J. Sound Vib. 430, 36–58 (2018)CrossRef
29.
Zurück zum Zitat Zhou, K., Su, J.P., Hua, H.X.: Aero-thermo-elastic flutter analysis of supersonic moderately thick orthotropic plates with general boundary conditions. Int. J. Mech. Sci. 141, 46–57 (2018)CrossRef Zhou, K., Su, J.P., Hua, H.X.: Aero-thermo-elastic flutter analysis of supersonic moderately thick orthotropic plates with general boundary conditions. Int. J. Mech. Sci. 141, 46–57 (2018)CrossRef
30.
Zurück zum Zitat Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow. Acta Astronaut. 140, 176–189 (2017)CrossRef Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow. Acta Astronaut. 140, 176–189 (2017)CrossRef
31.
Zurück zum Zitat Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the aerothermoelastic properties of composite laminated cylindrical shells with elastic boundaries in supersonic airflow based on the Rayleigh-Ritz method. Aerosp. Sci. Technol. 82, 534–544 (2018)CrossRef Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the aerothermoelastic properties of composite laminated cylindrical shells with elastic boundaries in supersonic airflow based on the Rayleigh-Ritz method. Aerosp. Sci. Technol. 82, 534–544 (2018)CrossRef
32.
Zurück zum Zitat Young, T.H., Lee, C.W., Chen, F.Y.: Dynamic stability of skew plates subjected to aerodynamic and random in–plane forces. J. Sound Vib. 250(3), 401–414 (2002)CrossRef Young, T.H., Lee, C.W., Chen, F.Y.: Dynamic stability of skew plates subjected to aerodynamic and random in–plane forces. J. Sound Vib. 250(3), 401–414 (2002)CrossRef
33.
Zurück zum Zitat Epureanu, B.I., Tang, L.S., Paidoussis, M.P.: Coherent structures and their influence on the dynamics of aeroelastic panels. Int. J. Non-Linear Mech. 39(6), 977–991 (2004)MATHCrossRef Epureanu, B.I., Tang, L.S., Paidoussis, M.P.: Coherent structures and their influence on the dynamics of aeroelastic panels. Int. J. Non-Linear Mech. 39(6), 977–991 (2004)MATHCrossRef
34.
Zurück zum Zitat Kariappa, Somashekar B.R., Shah, C.G.: Discrete element approach to flutter of skew panels with in-plane forces under yawed supersonic flow. AIAA J. 8(11), 2017–2022 (1970)MATHCrossRef Kariappa, Somashekar B.R., Shah, C.G.: Discrete element approach to flutter of skew panels with in-plane forces under yawed supersonic flow. AIAA J. 8(11), 2017–2022 (1970)MATHCrossRef
35.
Zurück zum Zitat Shiau, L.C., Chen, Y.S.: Effects of in-plane load on flutter of homogeneous laminated beam plates with delamination. J. Vib. Acoust. 123(1), 61–66 (2001)CrossRef Shiau, L.C., Chen, Y.S.: Effects of in-plane load on flutter of homogeneous laminated beam plates with delamination. J. Vib. Acoust. 123(1), 61–66 (2001)CrossRef
36.
Zurück zum Zitat Asadi, H., Wang, Q.: An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow. Compos. B Eng. 116, 486–499 (2017)CrossRef Asadi, H., Wang, Q.: An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow. Compos. B Eng. 116, 486–499 (2017)CrossRef
37.
Zurück zum Zitat Yang, X.D., Zhang, W., Wang, H.B., Yao, M.H.: The nonlinear dynamical analysis of a sandwich plate with in-plane loading in supersonic flow. Int. J. Bifurc. Chaos 26(09), 1650144 (2016)MathSciNetMATHCrossRef Yang, X.D., Zhang, W., Wang, H.B., Yao, M.H.: The nonlinear dynamical analysis of a sandwich plate with in-plane loading in supersonic flow. Int. J. Bifurc. Chaos 26(09), 1650144 (2016)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Asgari, M., Kouchakzadeh, M.A.: Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow. Compos. Struct. 143, 93–102 (2016)CrossRef Asgari, M., Kouchakzadeh, M.A.: Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow. Compos. Struct. 143, 93–102 (2016)CrossRef
39.
Zurück zum Zitat Barzegari, M.M., Dardel, M., Fathi, A., Ghadimi, M.: Aeroelastic characteristics of cantilever wing with embedded shape memory alloys. Acta Astronaut. 79, 189–202 (2012)CrossRef Barzegari, M.M., Dardel, M., Fathi, A., Ghadimi, M.: Aeroelastic characteristics of cantilever wing with embedded shape memory alloys. Acta Astronaut. 79, 189–202 (2012)CrossRef
40.
Zurück zum Zitat Guo, X., Lee, Y.Y., Mei, C.: Supersonic nonlinear panel flutter suppression using shape memory alloys. J. Aircr. 44(4), 1139–1149 (2007)CrossRef Guo, X., Lee, Y.Y., Mei, C.: Supersonic nonlinear panel flutter suppression using shape memory alloys. J. Aircr. 44(4), 1139–1149 (2007)CrossRef
41.
Zurück zum Zitat Zhang, Y.W., Zhang, H., Hou, S., Xu, K.F., Chen, L.Q.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016)CrossRef Zhang, Y.W., Zhang, H., Hou, S., Xu, K.F., Chen, L.Q.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016)CrossRef
42.
Zurück zum Zitat Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Mater. Struct. 20(5), 055013 (2011)CrossRef Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Mater. Struct. 20(5), 055013 (2011)CrossRef
43.
Zurück zum Zitat Chai, Y.Y., Song, Z.G., Li, F.M.: Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries. Compos. Struct. 179, 61–76 (2017)CrossRef Chai, Y.Y., Song, Z.G., Li, F.M.: Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries. Compos. Struct. 179, 61–76 (2017)CrossRef
44.
Zurück zum Zitat Farhadi, S., Hosseini-Hashemi, S.: Flutter stabilization of cantilevered plates using a bonded patch. Acta Mech. 219(3), 241–254 (2011)MATHCrossRef Farhadi, S., Hosseini-Hashemi, S.: Flutter stabilization of cantilevered plates using a bonded patch. Acta Mech. 219(3), 241–254 (2011)MATHCrossRef
45.
Zurück zum Zitat Hasheminejad, S.M., Motaaleghi, M.A.: Aeroelastic analysis and active flutter suppression of an electro-rheological sandwich cylindrical panel under yawed supersonic flow. Aerosp. Sci. Technol. 42, 118–127 (2015)CrossRef Hasheminejad, S.M., Motaaleghi, M.A.: Aeroelastic analysis and active flutter suppression of an electro-rheological sandwich cylindrical panel under yawed supersonic flow. Aerosp. Sci. Technol. 42, 118–127 (2015)CrossRef
46.
Zurück zum Zitat Pacheco, D.R.Q., Marques, F.D., Ferreira, A.J.M.: Panel flutter suppression with nonlinear energy sinks: Numerical modeling and analysis. Int. J. Non-Linear Mech. 106, 108–114 (2018)CrossRef Pacheco, D.R.Q., Marques, F.D., Ferreira, A.J.M.: Panel flutter suppression with nonlinear energy sinks: Numerical modeling and analysis. Int. J. Non-Linear Mech. 106, 108–114 (2018)CrossRef
47.
Zurück zum Zitat Li, Q.Q., Mei, C., Huang, J.K.: Suppression of thermal postbuckling and nonlinear panel flutter motions using piezoelectric actuators. AIAA J. 45(8), 1861–1873 (2007)CrossRef Li, Q.Q., Mei, C., Huang, J.K.: Suppression of thermal postbuckling and nonlinear panel flutter motions using piezoelectric actuators. AIAA J. 45(8), 1861–1873 (2007)CrossRef
48.
Zurück zum Zitat Chai, Y.Y., Li, F.M., Song, Z.G., Zhang, C.Z.: Aerothermoelastic flutter analysis and active vibration suppression of nonlinear composite laminated panels with time-dependent boundary conditions in supersonic airflow. J. Intell. Mater. Syst. Struct. 29(4), 653–668 (2018)CrossRef Chai, Y.Y., Li, F.M., Song, Z.G., Zhang, C.Z.: Aerothermoelastic flutter analysis and active vibration suppression of nonlinear composite laminated panels with time-dependent boundary conditions in supersonic airflow. J. Intell. Mater. Syst. Struct. 29(4), 653–668 (2018)CrossRef
49.
Zurück zum Zitat Samadpour, M., Asadi, H., Wang, Q.: Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys. Eur. J. Mech. A/Solids 57, 18–28 (2016)MathSciNetMATHCrossRef Samadpour, M., Asadi, H., Wang, Q.: Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys. Eur. J. Mech. A/Solids 57, 18–28 (2016)MathSciNetMATHCrossRef
50.
Zurück zum Zitat Song, Z.G., Li, F.M.: Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams. Nonlinear Dyn. 76(1), 57–68 (2014)MathSciNetMATHCrossRef Song, Z.G., Li, F.M.: Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams. Nonlinear Dyn. 76(1), 57–68 (2014)MathSciNetMATHCrossRef
51.
Zurück zum Zitat Chopra, I.: Flutter of a panel supported on an elastic foundation. AIAA J. 13(5), 687–688 (1975)CrossRef Chopra, I.: Flutter of a panel supported on an elastic foundation. AIAA J. 13(5), 687–688 (1975)CrossRef
52.
Zurück zum Zitat Goldman, B.D., Dowell, E.H.: Nonlinear oscillations of a fluttering plate resting on a unidirectional elastic foundation. AIAA J. 52(10), 2364–2368 (2014)CrossRef Goldman, B.D., Dowell, E.H.: Nonlinear oscillations of a fluttering plate resting on a unidirectional elastic foundation. AIAA J. 52(10), 2364–2368 (2014)CrossRef
53.
Zurück zum Zitat Emam, S., Eltaher, M.A.: Buckling and postbuckling of composite beams in hygrothermal environments. Compos. Struct. 152, 665–675 (2016)CrossRef Emam, S., Eltaher, M.A.: Buckling and postbuckling of composite beams in hygrothermal environments. Compos. Struct. 152, 665–675 (2016)CrossRef
54.
Zurück zum Zitat Shen, H.S., Lin, F., Xiang, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 90(2), 899–914 (2017)CrossRef Shen, H.S., Lin, F., Xiang, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 90(2), 899–914 (2017)CrossRef
55.
Zurück zum Zitat Aydogdu, M.: Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions. Compos. Sci. Technol. 67(6), 1096–1104 (2007)CrossRef Aydogdu, M.: Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions. Compos. Sci. Technol. 67(6), 1096–1104 (2007)CrossRef
56.
Zurück zum Zitat Zhang, D.B., Tang, Y.Q., Ding, H., Chen, L.Q.: Parametric and internal resonance of a transporting plate with a varying tension. Nonlinear Dyn. 98(4), 2491–2508 (2019)MATHCrossRef Zhang, D.B., Tang, Y.Q., Ding, H., Chen, L.Q.: Parametric and internal resonance of a transporting plate with a varying tension. Nonlinear Dyn. 98(4), 2491–2508 (2019)MATHCrossRef
57.
Zurück zum Zitat Zhang, L.W.: On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos. Struct. 160, 824–837 (2017)CrossRef Zhang, L.W.: On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos. Struct. 160, 824–837 (2017)CrossRef
58.
Zurück zum Zitat Ahmed, K.M.: Free vibration of curved sandwich beams by the method of finite elements. J. Sound Vib. 18(1), 61–74 (1971)MATHCrossRef Ahmed, K.M.: Free vibration of curved sandwich beams by the method of finite elements. J. Sound Vib. 18(1), 61–74 (1971)MATHCrossRef
59.
Zurück zum Zitat Hwu, C., Chang, W.C., Gai, H.S.: Vibration suppression of composite sandwich beams. J. Sound Vib. 272, 1–20 (2004)CrossRef Hwu, C., Chang, W.C., Gai, H.S.: Vibration suppression of composite sandwich beams. J. Sound Vib. 272, 1–20 (2004)CrossRef
60.
Zurück zum Zitat Lou, J., Ma, L., Wu, L.Z.: Free vibration analysis of simply supported sandwich beams with lattice truss core. Mater. Sci. Eng., B 177(19), 1712–1716 (2012)CrossRef Lou, J., Ma, L., Wu, L.Z.: Free vibration analysis of simply supported sandwich beams with lattice truss core. Mater. Sci. Eng., B 177(19), 1712–1716 (2012)CrossRef
Metadaten
Titel
A new method for suppressing nonlinear flutter and thermal buckling of composite lattice sandwich beams
verfasst von
Yuyang Chai
Fengming Li
Chuanzeng Zhang
Publikationsdatum
07.01.2022
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 1/2022
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-021-03107-0

Weitere Artikel der Ausgabe 1/2022

Acta Mechanica 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.