Skip to main content
Erschienen in: Acta Mechanica 1/2022

04.01.2022 | Original Paper

A friction model of fractal rough surfaces accounting for size dependence at nanoscale

verfasst von: X. M. Liang, G. F. Wang

Erschienen in: Acta Mechanica | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional laws of friction believe that the friction coefficient of two specific solids takes a constant value. However, molecular simulations revealed that the friction coefficient of nanosized asperity depends strongly on contact size and asperity radius. Since contacting surfaces are always rough consisting of asperities varying dramatically in geometric size, a theoretical model is developed to predict the friction behavior of fractal rough surfaces in this work. The result of atomic-scale simulations of sphere-on-flat friction is summarized into a uniform expression. Then, the size dependent feature of friction at nanoscale is incorporated into the analysis of fractal rough surfaces. The obtained results display the dependence of friction coefficient on roughness, material properties, and load. It is revealed that the friction coefficient decreases with increasing contact area or external load. This model gives a theoretical guideline for the prediction of friction coefficient and the design of friction pairs.
Literatur
1.
Zurück zum Zitat Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. A—Math., Phys. Eng. Sci. 243(1233), 190–205 (1957) Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. A—Math., Phys. Eng. Sci. 243(1233), 190–205 (1957)
2.
Zurück zum Zitat Broniec, C., Lenkiewicz, W.: Static friction processes under dynamic loads and vibration. Wear 80(3), 261–271 (1982)CrossRef Broniec, C., Lenkiewicz, W.: Static friction processes under dynamic loads and vibration. Wear 80(3), 261–271 (1982)CrossRef
3.
Zurück zum Zitat Rabinowicz, E., Kaymaram, F.: On the mechanism of failure of particulate rigid disks. Tribol. Trans. 34(4), 618–622 (1991)CrossRef Rabinowicz, E., Kaymaram, F.: On the mechanism of failure of particulate rigid disks. Tribol. Trans. 34(4), 618–622 (1991)CrossRef
4.
Zurück zum Zitat Etsion, I., Amit, M.: The effect of small normal loads on the static friction coefficient for very smooth surfaces. J. Tribol.-Trans. ASME 115(3), 406–410 (1993)CrossRef Etsion, I., Amit, M.: The effect of small normal loads on the static friction coefficient for very smooth surfaces. J. Tribol.-Trans. ASME 115(3), 406–410 (1993)CrossRef
5.
Zurück zum Zitat Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRef Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRef
6.
Zurück zum Zitat Braun, O.M., Steenwyk, B., Warhadpande, A., Persson, B.N.J.: On the dependency of friction on load: theory and experiment. Eur. Phys. Lett. 113(5), 56002 (2016)CrossRef Braun, O.M., Steenwyk, B., Warhadpande, A., Persson, B.N.J.: On the dependency of friction on load: theory and experiment. Eur. Phys. Lett. 113(5), 56002 (2016)CrossRef
7.
Zurück zum Zitat Fortunato, G., Ciaravola, V., Furno, A., Scaraggi, M., Lorenz, B., Persson, B.N.J.: Dependency of rubber friction on normal force or load: theory and experiment. Tire Sci. Technol. 45(1), 25–54 (2017)CrossRef Fortunato, G., Ciaravola, V., Furno, A., Scaraggi, M., Lorenz, B., Persson, B.N.J.: Dependency of rubber friction on normal force or load: theory and experiment. Tire Sci. Technol. 45(1), 25–54 (2017)CrossRef
8.
Zurück zum Zitat Dangnan, F., Espejo, C., Liskiweicz, T., Gester, M., Neville, A.: Friction and wear of additive manufactured polymers in dry contact. J. Manuf. Process. 59, 238–247 (2020)CrossRef Dangnan, F., Espejo, C., Liskiweicz, T., Gester, M., Neville, A.: Friction and wear of additive manufactured polymers in dry contact. J. Manuf. Process. 59, 238–247 (2020)CrossRef
9.
Zurück zum Zitat Ozaki, S., Matsuura, T., Maegawa, S.: Rate-, state-, and pressure-dependent friction model based on the elastoplastic theory. Friction 8(4), 768–783 (2020)CrossRef Ozaki, S., Matsuura, T., Maegawa, S.: Rate-, state-, and pressure-dependent friction model based on the elastoplastic theory. Friction 8(4), 768–783 (2020)CrossRef
10.
Zurück zum Zitat Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A—Math., Phys. Eng. Sci. 295(1442), 300–319 (1966) Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A—Math., Phys. Eng. Sci. 295(1442), 300–319 (1966)
11.
Zurück zum Zitat Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)CrossRef Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)CrossRef
12.
Zurück zum Zitat Song, H., Van der Giessen, E., Liu, X.: Strain gradient plasticity analysis of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 96, 18–28 (2016)MathSciNetCrossRef Song, H., Van der Giessen, E., Liu, X.: Strain gradient plasticity analysis of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 96, 18–28 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Wang, G.F., Long, J.M., Feng, X.Q.: A self-consistent model for the elastic contact of rough surfaces. Acta Mech. 226(2), 285–293 (2015)MathSciNetMATHCrossRef Wang, G.F., Long, J.M., Feng, X.Q.: A self-consistent model for the elastic contact of rough surfaces. Acta Mech. 226(2), 285–293 (2015)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 308(5961), 721–722 (1984)CrossRef Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 308(5961), 721–722 (1984)CrossRef
15.
Zurück zum Zitat Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear 136(2), 313–327 (1990)CrossRef Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear 136(2), 313–327 (1990)CrossRef
16.
Zurück zum Zitat Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)CrossRef Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)CrossRef
17.
Zurück zum Zitat Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998)CrossRef Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998)CrossRef
18.
Zurück zum Zitat Long, J.M., Wang, G.F., Feng, X.Q., Yu, S.W.: Influence of surface tension on fractal contact model. J. Appl. Phys. 115(12), 123522 (2014)CrossRef Long, J.M., Wang, G.F., Feng, X.Q., Yu, S.W.: Influence of surface tension on fractal contact model. J. Appl. Phys. 115(12), 123522 (2014)CrossRef
19.
Zurück zum Zitat Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001)CrossRef Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001)CrossRef
20.
Zurück zum Zitat Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87(11), 116101 (2001)CrossRef Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87(11), 116101 (2001)CrossRef
21.
Zurück zum Zitat Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. Part C—J. Mech. Eng. Sci. 197, 53–59 (1983)CrossRef Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. Part C—J. Mech. Eng. Sci. 197, 53–59 (1983)CrossRef
22.
Zurück zum Zitat Chang, W.R., Etsion, I., Bogy, D.B.: Adhesion model for metallic rough surfaces. J. Tribol.-Trans. ASME 110(1), 50–56 (1988)CrossRef Chang, W.R., Etsion, I., Bogy, D.B.: Adhesion model for metallic rough surfaces. J. Tribol.-Trans. ASME 110(1), 50–56 (1988)CrossRef
23.
Zurück zum Zitat Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol.-Trans. ASME 110(1), 57–63 (1988)CrossRef Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol.-Trans. ASME 110(1), 57–63 (1988)CrossRef
24.
Zurück zum Zitat Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol.-Trans. ASME 125(3), 499–506 (2003)CrossRef Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol.-Trans. ASME 125(3), 499–506 (2003)CrossRef
25.
Zurück zum Zitat Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol.-Trans. ASME 126(1), 34–40 (2004)CrossRef Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol.-Trans. ASME 126(1), 34–40 (2004)CrossRef
26.
Zurück zum Zitat Homola, A.M., Israelachvili, J.N., McGuiggan, P.M., Gee, M.L.: Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 136(1), 65–83 (1990)CrossRef Homola, A.M., Israelachvili, J.N., McGuiggan, P.M., Gee, M.L.: Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 136(1), 65–83 (1990)CrossRef
27.
Zurück zum Zitat Carpick, R.W., Agrait, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol., B 14(2), 1289–1295 (1996)CrossRef Carpick, R.W., Agrait, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol., B 14(2), 1289–1295 (1996)CrossRef
28.
Zurück zum Zitat Li, Q.Y., Kim, K.S.: Micromechanics of friction: effects of nanometre-scale roughness. Proc. R. Soc. A—Math., Phys. Eng. Sci. 464(2093), 1319–1343 (2008)CrossRef Li, Q.Y., Kim, K.S.: Micromechanics of friction: effects of nanometre-scale roughness. Proc. R. Soc. A—Math., Phys. Eng. Sci. 464(2093), 1319–1343 (2008)CrossRef
29.
Zurück zum Zitat Perčić, M., Zelenika, S., Mezić, I., Peter, R., Krstulović, N.: An experimental methodology for the concurrent characterization of multiple parameters influencing nanoscale friction. Friction 8(3), 577–593 (2020)CrossRef Perčić, M., Zelenika, S., Mezić, I., Peter, R., Krstulović, N.: An experimental methodology for the concurrent characterization of multiple parameters influencing nanoscale friction. Friction 8(3), 577–593 (2020)CrossRef
30.
Zurück zum Zitat Perčić, M., Zelenika, S., Mezić, I.: Artificial intelligence-based predictive model of nanoscale friction using experimental data. Friction 9(6), 1726–1748 (2021)CrossRef Perčić, M., Zelenika, S., Mezić, I.: Artificial intelligence-based predictive model of nanoscale friction using experimental data. Friction 9(6), 1726–1748 (2021)CrossRef
31.
Zurück zum Zitat Hurtado, J.A., Kim, K.S.: Scale effects in friction of single-asperity contacts. I. From concurrent slip to single-dislocation-assisted slip. Proc. R. Soc. A—Math., Phys. Eng. Sci. 455(1989), 3363–3384 (1999)MATHCrossRef Hurtado, J.A., Kim, K.S.: Scale effects in friction of single-asperity contacts. I. From concurrent slip to single-dislocation-assisted slip. Proc. R. Soc. A—Math., Phys. Eng. Sci. 455(1989), 3363–3384 (1999)MATHCrossRef
32.
Zurück zum Zitat Hurtado, J.A., Kim, K.S.: Scale effects in friction of single-asperity contacts. II. Multiple-dislocation-cooperated slip. Proc. R. Soc. A—Math., Phys. Eng. Sci. 455(1989), 3385–3400 (1999)MATHCrossRef Hurtado, J.A., Kim, K.S.: Scale effects in friction of single-asperity contacts. II. Multiple-dislocation-cooperated slip. Proc. R. Soc. A—Math., Phys. Eng. Sci. 455(1989), 3385–3400 (1999)MATHCrossRef
33.
Zurück zum Zitat Sharp, T.A., Pastewka, L., Robbins, M.O.: Elasticity limits structural superlubricity in large contacts. Phys. Rev. B 93(12), 121402 (2016)CrossRef Sharp, T.A., Pastewka, L., Robbins, M.O.: Elasticity limits structural superlubricity in large contacts. Phys. Rev. B 93(12), 121402 (2016)CrossRef
34.
Zurück zum Zitat Sharp, T.A., Pastewka, L., Ligneres, V.L., Robbins, M.O.: Scale- and Load-dependent friction in commensurate sphere-on-flat contacts. Phys. Rev. B 96(15), 155436 (2017)CrossRef Sharp, T.A., Pastewka, L., Ligneres, V.L., Robbins, M.O.: Scale- and Load-dependent friction in commensurate sphere-on-flat contacts. Phys. Rev. B 96(15), 155436 (2017)CrossRef
35.
Zurück zum Zitat Wang, J., Yuan, W.K., Bian, J.J., Wang, G.F.: A semi-analytical model for the scale-dependent friction of nanosized asperity. J. Phys. Commun. 4(9), 095026 (2020)CrossRef Wang, J., Yuan, W.K., Bian, J.J., Wang, G.F.: A semi-analytical model for the scale-dependent friction of nanosized asperity. J. Phys. Commun. 4(9), 095026 (2020)CrossRef
36.
Zurück zum Zitat Morag, Y., Etsion, I.: Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear 262(5–6), 624–629 (2007)CrossRef Morag, Y., Etsion, I.: Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear 262(5–6), 624–629 (2007)CrossRef
37.
Zurück zum Zitat Yuan, Y., Cheng, Y., Liu, K., Gan, L.: A revised Majumdar and Bhushan model of elastoplastic contact between rough surfaces. Appl. Surf. Sci. 425, 1138–1157 (2017)CrossRef Yuan, Y., Cheng, Y., Liu, K., Gan, L.: A revised Majumdar and Bhushan model of elastoplastic contact between rough surfaces. Appl. Surf. Sci. 425, 1138–1157 (2017)CrossRef
38.
Zurück zum Zitat Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol.-Trans. ASME 109(2), 257–263 (1987)CrossRef Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol.-Trans. ASME 109(2), 257–263 (1987)CrossRef
39.
Zurück zum Zitat Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002)MATHCrossRef Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002)MATHCrossRef
40.
Zurück zum Zitat Gao, Y.F.: A Peierls perspective on mechanisms of atomic friction. J. Mech. Phys. Solids 58(12), 2023–2032 (2010)MATHCrossRef Gao, Y.F.: A Peierls perspective on mechanisms of atomic friction. J. Mech. Phys. Solids 58(12), 2023–2032 (2010)MATHCrossRef
41.
Zurück zum Zitat He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284(5420), 1650–1652 (1999)CrossRef He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284(5420), 1650–1652 (1999)CrossRef
42.
Zurück zum Zitat Peierls, R.: The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940)CrossRef Peierls, R.: The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940)CrossRef
43.
Zurück zum Zitat Gourdon, D., Israelachvili, J.N.: Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 68(2), 021602 (2003)CrossRef Gourdon, D., Israelachvili, J.N.: Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 68(2), 021602 (2003)CrossRef
44.
Zurück zum Zitat Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)CrossRef Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)CrossRef
Metadaten
Titel
A friction model of fractal rough surfaces accounting for size dependence at nanoscale
verfasst von
X. M. Liang
G. F. Wang
Publikationsdatum
04.01.2022
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 1/2022
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-021-03109-y

Weitere Artikel der Ausgabe 1/2022

Acta Mechanica 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.