Skip to main content
Erschienen in: Acta Mechanica 11/2022

01.09.2022 | Original Paper

Construction of dynamic Green’s function for an infinite acoustic field with multiple prolate spheroids

verfasst von: W. M. Lee, J. T. Chen

Erschienen in: Acta Mechanica | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The acoustic pressure of an unbounded acoustic field with multiple prolate spheroids with the Robin boundary conditions subjected to a time-harmonic point source located at an arbitrary location is solved semi-analytically in this work. This resultant solution is the so-called dynamic Green’s function, which is important for acoustic problems such as sound scattering and noise control. It can be obtained by combining the fundamental solution with a homogenous solution, which is determined by using the collocation multipole procedure to satisfy the required Robin boundary conditions. To consider the geometries as described herein, the regular solution is expanded with angular and radial prolate spheroidal wave functions. As an alternate to the complex addition theorem applied to problems in multiply connected domains, by the directional derivative, the multipole expansion is computed in a straightforward manner among different local prolate spheroidal coordinate systems. By taking the finite terms of the multipole expansion at all collocating points, an algebraic system is acquired, and then the unknown coefficients are determined to complete the proposed dynamic Green’s function by the Robin boundary conditions. The present results of one spheroid agree with the available analytical solutions. For the case of more than one spheroid, the proposed results are verified by comparison with the numerical method such as the boundary element method (BEM). It indicates that the present solution is more accurate than that of the BEM and shows a fast convergence. In the end, the parameter study is performed to explore the influences of the exciting frequency of the point source, the surface admittance, the number and the separation of spheroids, and the aspect ratio of spheroid on the dynamic Green’s functions. The proposed results can be applied to solve the time-harmonic problems for an unbounded acoustic field containing multiple spheroids. In the form of numerical Green's functions, they can improve the computational efficiency and increase the application of the boundary integral equation method.
Literatur
1.
Zurück zum Zitat Kythe, P.K.: Green’s functions and linear differential equations: theory, applications, and computation. Chapman and Hall/CRC (2011) Kythe, P.K.: Green’s functions and linear differential equations: theory, applications, and computation. Chapman and Hall/CRC (2011)
2.
Zurück zum Zitat Greenberg, M.D.: Application of Green’s functions in science and engineering. Prentice-Hall, Englewood Cliffs, N.J. (1971) Greenberg, M.D.: Application of Green’s functions in science and engineering. Prentice-Hall, Englewood Cliffs, N.J. (1971)
3.
Zurück zum Zitat Melnikov, Y.A.: Some application of the Green’s function method in mechanics. Int. J. Solids Struct. 13, 1045–1058 (1977)MathSciNetCrossRefMATH Melnikov, Y.A.: Some application of the Green’s function method in mechanics. Int. J. Solids Struct. 13, 1045–1058 (1977)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Melnikov, Y.A., Melnikov, M.Y.: Modified potential as a tool for computing Green’s functions in continuum mechanics. CMES-Comp. Model. Eng. Sci. 2, 291–305 (2001) Melnikov, Y.A., Melnikov, M.Y.: Modified potential as a tool for computing Green’s functions in continuum mechanics. CMES-Comp. Model. Eng. Sci. 2, 291–305 (2001)
5.
Zurück zum Zitat Seybert, A.F., Soenarko, B.: Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space. J. Vib. Acoust. Trans. ASME. 110(1), 112–117 (1988)CrossRef Seybert, A.F., Soenarko, B.: Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space. J. Vib. Acoust. Trans. ASME. 110(1), 112–117 (1988)CrossRef
6.
Zurück zum Zitat Park, J.M.: A boundary element method for propagation over absorbing boundaries. J. Sound Vib. 175(2), 197–218 (1994)CrossRefMATH Park, J.M.: A boundary element method for propagation over absorbing boundaries. J. Sound Vib. 175(2), 197–218 (1994)CrossRefMATH
7.
Zurück zum Zitat Chandler-Wilde, S.N., Heinemeyer, E., Potthast, R.: Acoustic scattering by mildly rough unbounded surfaces in three dimensions. SIAM J. Appl. Math. 66(3), 1002–1026 (2006)MathSciNetCrossRefMATH Chandler-Wilde, S.N., Heinemeyer, E., Potthast, R.: Acoustic scattering by mildly rough unbounded surfaces in three dimensions. SIAM J. Appl. Math. 66(3), 1002–1026 (2006)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)CrossRef Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)CrossRef
10.
Zurück zum Zitat Tadeu, A., Antonio, J., Godinho, L.: Applications of the Green functions in the study of acoustic problems in open and closed spaces. J. Sound Vib. 247(1), 117–130 (2001)CrossRef Tadeu, A., Antonio, J., Godinho, L.: Applications of the Green functions in the study of acoustic problems in open and closed spaces. J. Sound Vib. 247(1), 117–130 (2001)CrossRef
11.
Zurück zum Zitat Wang, X., Sudak, L.J.: Antiplane time harmonic Green’s functions for a circular inhomogeneity with an imperfect interface. Mech. Res. Commun. 34(4), 352–358 (2007)CrossRefMATH Wang, X., Sudak, L.J.: Antiplane time harmonic Green’s functions for a circular inhomogeneity with an imperfect interface. Mech. Res. Commun. 34(4), 352–358 (2007)CrossRefMATH
12.
Zurück zum Zitat Lee, W.M., Chen, J.T., Young, W.M.: Dynamic Green’s functions for multiple circular inclusions with imperfect interfaces using the collocation multipole method. Eng. Anal. Bound. Elem. 94, 113–121 (2018)MathSciNetCrossRefMATH Lee, W.M., Chen, J.T., Young, W.M.: Dynamic Green’s functions for multiple circular inclusions with imperfect interfaces using the collocation multipole method. Eng. Anal. Bound. Elem. 94, 113–121 (2018)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Lee, W.M., Chen, J.T.: Dynamic Green’s functions for multiple elliptical inclusions with imperfect interfaces. Mech. Res. Commun. 108, 103567 (2020)CrossRef Lee, W.M., Chen, J.T.: Dynamic Green’s functions for multiple elliptical inclusions with imperfect interfaces. Mech. Res. Commun. 108, 103567 (2020)CrossRef
14.
Zurück zum Zitat Lee, J.W., Chen, J.T., Leu, S.Y., Kao, S.K.: Null-field BIEM for solving a scattering problem from a point source to a two-layer prolate spheroid. Acta Mech. 225, 873–891 (2014)MathSciNetCrossRefMATH Lee, J.W., Chen, J.T., Leu, S.Y., Kao, S.K.: Null-field BIEM for solving a scattering problem from a point source to a two-layer prolate spheroid. Acta Mech. 225, 873–891 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Chen, J.T., Lee, J.W., Kao, Y.C., Leu, S.Y.: Eigenanalysis for a confocal prolate spheroidal resonator using the null-field BIEM in conjunction with degenerate kernels. Acta Mech. 226, 475–490 (2015)MathSciNetCrossRefMATH Chen, J.T., Lee, J.W., Kao, Y.C., Leu, S.Y.: Eigenanalysis for a confocal prolate spheroidal resonator using the null-field BIEM in conjunction with degenerate kernels. Acta Mech. 226, 475–490 (2015)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Okoyenta, A.R., Wu, H., Liu, X., Jiang, W.: A short survey on Green’s function for acoustic problems. J. Theor. Comput. Acoust. 28(02), 1950025 (2020)MathSciNetCrossRef Okoyenta, A.R., Wu, H., Liu, X., Jiang, W.: A short survey on Green’s function for acoustic problems. J. Theor. Comput. Acoust. 28(02), 1950025 (2020)MathSciNetCrossRef
17.
Zurück zum Zitat Duffy, D.G.: Green's Functions with Applications. Chapman and Hall/CRC (2001) Duffy, D.G.: Green's Functions with Applications. Chapman and Hall/CRC (2001)
18.
Zurück zum Zitat Telles, J.C.F., Castor, G.S., Guimaraes, S.: Numerical Green’s function approach for boundary elements applied to fracture mechanics. Int. J. Numer. Methods Eng. 38(19), 3259–3274 (1995)CrossRefMATH Telles, J.C.F., Castor, G.S., Guimaraes, S.: Numerical Green’s function approach for boundary elements applied to fracture mechanics. Int. J. Numer. Methods Eng. 38(19), 3259–3274 (1995)CrossRefMATH
19.
Zurück zum Zitat Harwood, A., Dupere, I.: Numerical evaluation of the compact acoustic Green’s function for scattering problems. Appl. Math. Model. 40, 795–814 (2016)MathSciNetCrossRefMATH Harwood, A., Dupere, I.: Numerical evaluation of the compact acoustic Green’s function for scattering problems. Appl. Math. Model. 40, 795–814 (2016)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)MATH
21.
Zurück zum Zitat Flammer, C.: Spheroidal wave functions. Stanford University Press, Stanford, Calif. (1957)MATH Flammer, C.: Spheroidal wave functions. Stanford University Press, Stanford, Calif. (1957)MATH
22.
Zurück zum Zitat Stratton, J.A.: Spheroidal Wave Functions: Including Tables of Separation Constants and Coefficients. Technology Press of M.I.T. and Wiley, New York (1956)CrossRefMATH Stratton, J.A.: Spheroidal Wave Functions: Including Tables of Separation Constants and Coefficients. Technology Press of M.I.T. and Wiley, New York (1956)CrossRefMATH
23.
Zurück zum Zitat Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)MATH Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)MATH
24.
Zurück zum Zitat Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. (Vol. 3) McGraw-Hill, New York (1955) Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. (Vol. 3) McGraw-Hill, New York (1955)
25.
Zurück zum Zitat Zhang, S., Jin, J.: Computation of Special Functions. Wiley, New York (1996) Zhang, S., Jin, J.: Computation of Special Functions. Wiley, New York (1996)
26.
Zurück zum Zitat Kleshchev, A.A.: Sound scattering by spheroidal bodies near an interface. Sov. Phys. Acoust. 23(3), 225–228 (1977) Kleshchev, A.A.: Sound scattering by spheroidal bodies near an interface. Sov. Phys. Acoust. 23(3), 225–228 (1977)
27.
Zurück zum Zitat Wu, T.W.: Boundary Element Acoustics: Fundamentals and Computer Codes. WIT Press, Southampton UK (2000)MATH Wu, T.W.: Boundary Element Acoustics: Fundamentals and Computer Codes. WIT Press, Southampton UK (2000)MATH
Metadaten
Titel
Construction of dynamic Green’s function for an infinite acoustic field with multiple prolate spheroids
verfasst von
W. M. Lee
J. T. Chen
Publikationsdatum
01.09.2022
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 11/2022
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-022-03301-8

Weitere Artikel der Ausgabe 11/2022

Acta Mechanica 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.