Skip to main content
Erschienen in: Acta Mechanica 11/2022

13.09.2022 | Original Paper

Analytical and numerical investigations on inerter-based NES absorber system with nonlinear damping

verfasst von: Rony Philip, B. Santhosh, Bipin Balaram

Erschienen in: Acta Mechanica | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two major concerns with the nonlinear energy sink (NES) when used as a passive vibration absorber are the mass of the NES and the threshold of external excitation to initiate the targeted energy transfer (TET). This work proposes an inertial NES with nonlinear damping to address the aforementioned concerns. An inerter replaces the conventional NES’s mass to reduce the absorber system’s effective mass. The addition of nonlinear damping created instability and therefore initiated the strongly modulated response (SMR) even for lower excitation amplitude which is the most favorable condition for TET. A base excited linear primary system appended with the proposed NES is used to demonstrate the claims. Multi-harmonic balance method (MHBM) combined with arc-length continuation and Floquet theory generates the frequency response plots and identifies the stable and unstable periodic solution branches. Numerical studies at the unstable periodic solution obtained by MHBM revealed the existence of SMR. The slow flow dynamics and the slow invariant manifold (SIM) associated with the SMR are derived using the complexification averaging (CX-A) method combined with the singular perturbation theory. The SIM topology is investigated for variations in the strength of nonlinearity, nonlinear damping factor, and mass ratio. The performance of the proposed inertial NES with nonlinear damping is compared with that of a conventional NES with viscous damping, and the merits are highlighted. It is observed that with the addition of nonlinear damping in the inertial NES, the SMR is initiated even at low excitation amplitude, and efficient energy transfer takes place from the linear oscillator to NES. The combined approach using MHBM and CX-A provided better insight into the analysis of NES-based vibration absorber systems.
Literatur
1.
Zurück zum Zitat Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001) Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)
2.
Zurück zum Zitat Geng, X.F., Ding, H., Mao, X.Y., Chen, L.Q.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process. 156, 107625 (2021) Geng, X.F., Ding, H., Mao, X.Y., Chen, L.Q.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process. 156, 107625 (2021)
3.
Zurück zum Zitat Lamarque, C.H., Gendelman, O.V., Ture, Savadkoohi A., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1), 175–200 (2011)MATH Lamarque, C.H., Gendelman, O.V., Ture, Savadkoohi A., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1), 175–200 (2011)MATH
4.
Zurück zum Zitat Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman, L.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264(3), 559–577 (2003) Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman, L.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264(3), 559–577 (2003)
5.
Zurück zum Zitat Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299(4–5), 822–838 (2007) Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299(4–5), 822–838 (2007)
6.
Zurück zum Zitat Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007) Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007)
7.
Zurück zum Zitat Lee, Y.S., Vakakis, A.F., Bergman, L.A., Michael, McFarland, D.: Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks. Struct. Control Health Monit. Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 13(1), 41–75 (2006) Lee, Y.S., Vakakis, A.F., Bergman, L.A., Michael, McFarland, D.: Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks. Struct. Control Health Monit. Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 13(1), 41–75 (2006)
8.
Zurück zum Zitat Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018) Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018)
9.
Zurück zum Zitat Ding, H., Cheg, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020) Ding, H., Cheg, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)
10.
Zurück zum Zitat Motato, E., Haris, A., Theodossiades, S., Mohammadpour, M., Rahnejat, H., Kelly, P., Bergman, L.A.: Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dyn. 87(1), 169–190 (2017) Motato, E., Haris, A., Theodossiades, S., Mohammadpour, M., Rahnejat, H., Kelly, P., Bergman, L.A.: Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dyn. 87(1), 169–190 (2017)
11.
Zurück zum Zitat Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1–2), 234–256 (2008) Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1–2), 234–256 (2008)
12.
Zurück zum Zitat Zhou, B., Thouverez, F., Lenoir, D.: A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems. Mech. Syst. Signal Process. 64, 233–244 (2015) Zhou, B., Thouverez, F., Lenoir, D.: A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems. Mech. Syst. Signal Process. 64, 233–244 (2015)
13.
Zurück zum Zitat Tian, W., Li, Y., Li, P., Yang, Z., Zhao, T.: Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink. J. Sound Vib. 462, 114942 (2019) Tian, W., Li, Y., Li, P., Yang, Z., Zhao, T.: Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink. J. Sound Vib. 462, 114942 (2019)
14.
Zurück zum Zitat Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315(3), 746–765 (2008) Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315(3), 746–765 (2008)
15.
Zurück zum Zitat Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3) (2016) Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3) (2016)
16.
Zurück zum Zitat AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10(1) (2015) AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10(1) (2015)
17.
Zurück zum Zitat Yao, H., Cao, Y., Zhang, S., Wen, B.: A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. 94(3), 2265–2275 (2018) Yao, H., Cao, Y., Zhang, S., Wen, B.: A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. 94(3), 2265–2275 (2018)
18.
Zurück zum Zitat Dai, J., Wang, Y., Wei, M., Zhang, W., Zhu, J., Jin, H., Jiang, C.: Dynamic characteristic analysis of the inerter-based piecewise vibration isolator under base excitation. Acta Mech., in press (2022) Dai, J., Wang, Y., Wei, M., Zhang, W., Zhu, J., Jin, H., Jiang, C.: Dynamic characteristic analysis of the inerter-based piecewise vibration isolator under base excitation. Acta Mech., in press (2022)
19.
Zurück zum Zitat Wang, G.X., Ding, H., Chen, L.Q.: Performance evaluation and design criterion of a nonlinear energy sink. Mech. Syst. Signal Process. 169, 108770 (2022) Wang, G.X., Ding, H., Chen, L.Q.: Performance evaluation and design criterion of a nonlinear energy sink. Mech. Syst. Signal Process. 169, 108770 (2022)
20.
Zurück zum Zitat Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M.: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn, in press (2022) Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M.: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn, in press (2022)
21.
Zurück zum Zitat Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D 204(1–2), 41–69 (2005)MathSciNetMATH Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D 204(1–2), 41–69 (2005)MathSciNetMATH
22.
Zurück zum Zitat Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)MathSciNetMATH Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)MathSciNetMATH
23.
Zurück zum Zitat Zhao, Z., Chen, Q., Zhang, R., Pan, C., Jiang, Y.: Energy dissipation mechanism of inerter systems. Int. J. Mech. Sci. 184, 105845 (2020) Zhao, Z., Chen, Q., Zhang, R., Pan, C., Jiang, Y.: Energy dissipation mechanism of inerter systems. Int. J. Mech. Sci. 184, 105845 (2020)
24.
Zurück zum Zitat Smith, M.C., Wang, F.C.: Performance benefits in passive vehicle suspensions employing inerters. Veh. Syst. Dyn. 42(4), 235–257 (2004) Smith, M.C., Wang, F.C.: Performance benefits in passive vehicle suspensions employing inerters. Veh. Syst. Dyn. 42(4), 235–257 (2004)
25.
Zurück zum Zitat Sanches, L., Guimarães, T.A., Marques, F.D.: Nonlinear energy sink to enhance the landing gear shimmy performance. Acta Mech. 232(7), 2605–2622 (2021)MathSciNetMATH Sanches, L., Guimarães, T.A., Marques, F.D.: Nonlinear energy sink to enhance the landing gear shimmy performance. Acta Mech. 232(7), 2605–2622 (2021)MathSciNetMATH
26.
Zurück zum Zitat Giaralis, A., Petrini, F.: Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter. J. Struct. Eng. 143(9), 04017127 (2017) Giaralis, A., Petrini, F.: Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter. J. Struct. Eng. 143(9), 04017127 (2017)
27.
Zurück zum Zitat Xu, K., Bi, K., Han, Q., Li, X., Du, X.: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: analytical study. Eng. Struct. 182, 101–111 (2019) Xu, K., Bi, K., Han, Q., Li, X., Du, X.: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: analytical study. Eng. Struct. 182, 101–111 (2019)
28.
Zurück zum Zitat Hu, Y., Chen, M.Z., Smith, M.C.: Natural frequency assignment for mass-chain systems with inerters. Mech. Syst. Signal Process. 108, 126–139 (2018) Hu, Y., Chen, M.Z., Smith, M.C.: Natural frequency assignment for mass-chain systems with inerters. Mech. Syst. Signal Process. 108, 126–139 (2018)
29.
Zurück zum Zitat Zilletti, M.: Feedback control unit with an inerter proof-mass electrodynamic actuator. J. Sound Vib. 369, 16–28 (2016) Zilletti, M.: Feedback control unit with an inerter proof-mass electrodynamic actuator. J. Sound Vib. 369, 16–28 (2016)
30.
Zurück zum Zitat Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control 131(1) (2009) Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control 131(1) (2009)
31.
Zurück zum Zitat Li, C., Liang, M., Wang, Y., Dong, Y.: Vibration suppression using two-terminal flywheel. Part I: modeling and characterization. J. Vib. Control 18(8), 1096–1105 (2012) Li, C., Liang, M., Wang, Y., Dong, Y.: Vibration suppression using two-terminal flywheel. Part I: modeling and characterization. J. Vib. Control 18(8), 1096–1105 (2012)
32.
Zurück zum Zitat De Domenico, D., Deastra, P., Ricciardi, G., Sims, N.D., Wagg, D.J.: Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings. J. Franklin Inst. 356(14), 7626–7649 (2019)MATH De Domenico, D., Deastra, P., Ricciardi, G., Sims, N.D., Wagg, D.J.: Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings. J. Franklin Inst. 356(14), 7626–7649 (2019)MATH
33.
Zurück zum Zitat Ma, R., Bi, K., Hao, H.: Inerter-based structural vibration control: A state-of-the-art review. Eng. Struct. 243, 112655 (2021) Ma, R., Bi, K., Hao, H.: Inerter-based structural vibration control: A state-of-the-art review. Eng. Struct. 243, 112655 (2021)
34.
Zurück zum Zitat Wagg, D.J.: A review of the mechanical inerter: historical context, physical realisations and nonlinear applications. Nonlinear Dyn. 104(1), 13–34 (2021)MathSciNet Wagg, D.J.: A review of the mechanical inerter: historical context, physical realisations and nonlinear applications. Nonlinear Dyn. 104(1), 13–34 (2021)MathSciNet
35.
Zurück zum Zitat Hu, Y., Chen, M.Z.: Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci. 99, 297–307 (2015) Hu, Y., Chen, M.Z.: Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci. 99, 297–307 (2015)
36.
Zurück zum Zitat Wang, X., Liu, X., Shan, Y., Shen, Y., He, T.: Analysis and optimization of the novel inerter-based dynamic vibration absorbers. IEEE Access 6, 33169–33182 (2018) Wang, X., Liu, X., Shan, Y., Shen, Y., He, T.: Analysis and optimization of the novel inerter-based dynamic vibration absorbers. IEEE Access 6, 33169–33182 (2018)
37.
Zurück zum Zitat Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019) Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019)
38.
Zurück zum Zitat Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X., Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019) Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X., Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019)
39.
Zurück zum Zitat Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019) Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019)
40.
Zurück zum Zitat Zhang, W., Zhang, H.: Modeling and analysis of nonlinear damping mechanisms in vibrating systems. Int. J. Mech. Sci. 36(9), 829–848 (1994)MATH Zhang, W., Zhang, H.: Modeling and analysis of nonlinear damping mechanisms in vibrating systems. Int. J. Mech. Sci. 36(9), 829–848 (1994)MATH
41.
Zurück zum Zitat Ruzicka, J.E., Derby, T.F.: Vibration isolation with nonlinear damping (1971) Ruzicka, J.E., Derby, T.F.: Vibration isolation with nonlinear damping (1971)
42.
Zurück zum Zitat Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324(3–5), 916–939 (2009) Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324(3–5), 916–939 (2009)
43.
Zurück zum Zitat Mojahed, A., Moore, K., Bergman, L.A., Vakakis, A.F.: Strong geometric softening-hardening nonlinearities in an oscillator composed of linear stiffness and damping elements. Int. J. Non-Linear Mech. 107, 94–111 (2018) Mojahed, A., Moore, K., Bergman, L.A., Vakakis, A.F.: Strong geometric softening-hardening nonlinearities in an oscillator composed of linear stiffness and damping elements. Int. J. Non-Linear Mech. 107, 94–111 (2018)
44.
Zurück zum Zitat Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96(3), 1819–1845 (2019)MATH Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96(3), 1819–1845 (2019)MATH
45.
Zurück zum Zitat Touzé, C., Amabili, M.: Nonlinear normal modes for damped geometrically nonlinear systems: application to reduced-order modelling of harmonically forced structures. J. Sound Vib. 298(4–5), 958–981 (2006) Touzé, C., Amabili, M.: Nonlinear normal modes for damped geometrically nonlinear systems: application to reduced-order modelling of harmonically forced structures. J. Sound Vib. 298(4–5), 958–981 (2006)
46.
Zurück zum Zitat Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91(1), 733–754 (2018) Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91(1), 733–754 (2018)
47.
Zurück zum Zitat Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67(1), 807–827 (2012)MathSciNet Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67(1), 807–827 (2012)MathSciNet
48.
Zurück zum Zitat Liu, Y., Chen, G., Tan, X.: Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping. Nonlinear Dyn. 101(4), 2157–2180 (2020) Liu, Y., Chen, G., Tan, X.: Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping. Nonlinear Dyn. 101(4), 2157–2180 (2020)
49.
Zurück zum Zitat Zhang, Y., Kong, X., Yue, C., Xiong, H.: Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dyn. 105(1), 167–190 (2021) Zhang, Y., Kong, X., Yue, C., Xiong, H.: Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dyn. 105(1), 167–190 (2021)
50.
Zurück zum Zitat Philip, R., Santhosh, B., Balaram, B.: Dynamics and performance analysis of a nonlinear energy sink with geometric nonlinear damping. In: Advances in Nonlinear Dynamics. pp. 95–104. Springer, Cham (2022) Philip, R., Santhosh, B., Balaram, B.: Dynamics and performance analysis of a nonlinear energy sink with geometric nonlinear damping. In: Advances in Nonlinear Dynamics. pp. 95–104. Springer, Cham (2022)
51.
Zurück zum Zitat Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Bergman, L.A.: Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics. J. Vib. Control 14(1–2), 77–105 (2008)MathSciNetMATH Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Bergman, L.A.: Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics. J. Vib. Control 14(1–2), 77–105 (2008)MathSciNetMATH
52.
Zurück zum Zitat Raj, P.R., Santhosh, B.: Parametric study and optimization of linear and nonlinear vibration absorbers combined with piezoelectric energy harvester. Int. J. Mech. Sci. 152, 268–279 (2019) Raj, P.R., Santhosh, B.: Parametric study and optimization of linear and nonlinear vibration absorbers combined with piezoelectric energy harvester. Int. J. Mech. Sci. 152, 268–279 (2019)
53.
Zurück zum Zitat Gendelman, O.V., Gourdon, E., Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4–5), 651–662 (2006) Gendelman, O.V., Gourdon, E., Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4–5), 651–662 (2006)
54.
Zurück zum Zitat Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25(1), 95–109 (2001)MathSciNetMATH Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25(1), 95–109 (2001)MathSciNetMATH
55.
Zurück zum Zitat Tripathi, A., Grover, P., Kalmár-Nagy, T.: On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems. J. Sound Vib. 388, 272–297 (2017) Tripathi, A., Grover, P., Kalmár-Nagy, T.: On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems. J. Sound Vib. 388, 272–297 (2017)
56.
Zurück zum Zitat Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D 238(18), 1868–1896 (2009)MATH Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D 238(18), 1868–1896 (2009)MATH
Metadaten
Titel
Analytical and numerical investigations on inerter-based NES absorber system with nonlinear damping
verfasst von
Rony Philip
B. Santhosh
Bipin Balaram
Publikationsdatum
13.09.2022
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 11/2022
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-022-03333-0

Weitere Artikel der Ausgabe 11/2022

Acta Mechanica 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.