Skip to main content
Erschienen in: Bulletin of Engineering Geology and the Environment 9/2021

09.07.2021 | Original Paper

A predictive model based on the experimental investigation of collapsible soil treatment using nano-clay in the Sivand Dam region, Iran

verfasst von: A. Johari, H. Golkarfard, F. Davoudi, A. Fazeli

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a kind of problematic soil, collapsible soils can withstand relatively high stress in an unsaturated state. Still, upon wetting and being saturated, such soils show a significant sudden reduction in volume, causing damage to the structures. One of the environmentally friendly materials used to treat collapsible soils is the nano-clay as potential stabilizers. The present study investigates the nano-clay effect on the soil collapse treatment in the Sivand region, Fars Province, Iran. Further research proved to achieve fine dispersion of added nano-clay between the soil particles appropriately through the wet mixing method. To investigate effective soil collapse behavior parameters, 72 reconstructed samples with different water content, dry density, applied vertical stress, and nano-clay contents are tested using the static compaction method. The results indicate that soil collapse behavior is almost completely fixed using only 5% nano-clay. It has also been concluded that the collapse potential increases with reducing water content, dry density, nano-clay contents, while it has an increase if applied vertical stress increases. The extracted test results are used as a database to develop an efficient model to predict the soils’ collapse potential. Additionally, the parametric and sensitivity analyses confirm the model output with the test results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbasi N, Farjad A, Sepehri S (2018) The use of nanoclay particles for stabilization of dispersive clayey soils. Geotech Geol Eng 36:327–335CrossRef Abbasi N, Farjad A, Sepehri S (2018) The use of nanoclay particles for stabilization of dispersive clayey soils. Geotech Geol Eng 36:327–335CrossRef
Zurück zum Zitat Abd El Aal AK, Rouaiguia A (2020) Determination of the geotechnical parameters of soils behavior for safe future urban development Najran Area Saudi Arabia: implications for settlements mitigation. Geotech Geol Eng 38:695–712CrossRef Abd El Aal AK, Rouaiguia A (2020) Determination of the geotechnical parameters of soils behavior for safe future urban development Najran Area Saudi Arabia: implications for settlements mitigation. Geotech Geol Eng 38:695–712CrossRef
Zurück zum Zitat Alani S, Hassan MS, Jaber AA, Ali IM (2020) Effects of elevated temperatures on strength and microstructure of mortar containing nano-calcined montmorillonite clay. Constr Build Mater 263:120895 Alani S, Hassan MS, Jaber AA, Ali IM (2020) Effects of elevated temperatures on strength and microstructure of mortar containing nano-calcined montmorillonite clay. Constr Build Mater 263:120895
Zurück zum Zitat Alawaji H (2001) Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil. Geotext Geomembr 19:75–88CrossRef Alawaji H (2001) Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil. Geotext Geomembr 19:75–88CrossRef
Zurück zum Zitat Alsafi S, Farzadnia N, Asadi A, Huat BK (2017) Collapsibility potential of gypseous soil stabilized with fly ash geopolymer characterization and assessment. Constr Build Mater 137:390–409CrossRef Alsafi S, Farzadnia N, Asadi A, Huat BK (2017) Collapsibility potential of gypseous soil stabilized with fly ash geopolymer characterization and assessment. Constr Build Mater 137:390–409CrossRef
Zurück zum Zitat ASTMD854–14 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken ASTMD854–14 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken
Zurück zum Zitat ASTMD1557–12e1 (2012) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International, West Conshohocken ASTMD1557–12e1 (2012) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International, West Conshohocken
Zurück zum Zitat ASTMD2419–14 (2014) Standard test method for sand equivalent value of soils and fine aggregate. ASTM International, West Conshohocken ASTMD2419–14 (2014) Standard test method for sand equivalent value of soils and fine aggregate. ASTM International, West Conshohocken
Zurück zum Zitat ASTMD2435/D2435M-11(2020) (2020) Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken ASTMD2435/D2435M-11(2020) (2020) Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken
Zurück zum Zitat ASTMD2487–11 (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken ASTMD2487–11 (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken
Zurück zum Zitat ASTMD4318 (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken ASTMD4318 (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken
Zurück zum Zitat Barden L, McGown A, Collins K (1973) The collapse mechanism in partly saturated soil. Eng Geol 7:49–60CrossRef Barden L, McGown A, Collins K (1973) The collapse mechanism in partly saturated soil. Eng Geol 7:49–60CrossRef
Zurück zum Zitat Basma AA, Tuncer ER (1992) Evaluation and control of collapsible soils. J Geotech Eng 118:1491–1504CrossRef Basma AA, Tuncer ER (1992) Evaluation and control of collapsible soils. J Geotech Eng 118:1491–1504CrossRef
Zurück zum Zitat Baziar MH, Saeidaskari J, Alibolandi M (2018) Effects of nanoclay on the treatment of core material in earth dams. J Mater Civ Eng 30:04018250CrossRef Baziar MH, Saeidaskari J, Alibolandi M (2018) Effects of nanoclay on the treatment of core material in earth dams. J Mater Civ Eng 30:04018250CrossRef
Zurück zum Zitat Cao, G. (2004). Nanostructures & nanomaterials: synthesis, properties & applications, Imperial college press. Cao, G. (2004). Nanostructures & nanomaterials: synthesis, properties & applications, Imperial college press.
Zurück zum Zitat Clevenger WA (1959) Experiences with loess as a foundation material. T Am Soc Civ Eng 123:51–80 Clevenger WA (1959) Experiences with loess as a foundation material. T Am Soc Civ Eng 123:51–80
Zurück zum Zitat Coo JL, So ZP, Ng CW (2016) Effect of nanoparticles on the shrinkage properties of clay. Eng Geol 213:84–88CrossRef Coo JL, So ZP, Ng CW (2016) Effect of nanoparticles on the shrinkage properties of clay. Eng Geol 213:84–88CrossRef
Zurück zum Zitat D698–12e2 A (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken D698–12e2 A (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken
Zurück zum Zitat Das BM (2015) Principles of foundation engineering. Cengage learning, Boston Das BM (2015) Principles of foundation engineering. Cengage learning, Boston
Zurück zum Zitat Das BM, Sobhan K (2013) Principles of geotechnical engineering. Cengage learning, Boston Das BM, Sobhan K (2013) Principles of geotechnical engineering. Cengage learning, Boston
Zurück zum Zitat Derbyshire E (2001) Geological hazards in loess terrain with particular reference to the loess regions of China. Earth-Sci Rev 54:231–260CrossRef Derbyshire E (2001) Geological hazards in loess terrain with particular reference to the loess regions of China. Earth-Sci Rev 54:231–260CrossRef
Zurück zum Zitat Dudley, J. H. (1970). "Review of collapsing soils." J soil mech found div 96(3): 925-947. Dudley, J. H. (1970). "Review of collapsing soils." J soil mech found div 96(3): 925-947.
Zurück zum Zitat El-Sohby M, Shook M, Elleboudy A (1987) Swelling and shear strength characteristics of Mokattan shale. In: Proc 9th Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Lagos, Nigeria, pp 143–146 El-Sohby M, Shook M, Elleboudy A (1987) Swelling and shear strength characteristics of Mokattan shale. In: Proc 9th Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Lagos, Nigeria, pp 143–146
Zurück zum Zitat Evans G, Bell D (1981) Chemical stabilization of loess, New Zealand. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. pp 649–658 Evans G, Bell D (1981) Chemical stabilization of loess, New Zealand. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. pp 649–658
Zurück zum Zitat Feda, J. (1966). "Structural stability of subsident loess soil from Praha-Dejvice." Eng Geol 1(3): 201-219. Feda, J. (1966). "Structural stability of subsident loess soil from Praha-Dejvice." Eng Geol 1(3): 201-219.
Zurück zum Zitat Ferreira C (2003) Function finding and the creation of numerical constants in gene expression programming. In: Advances in soft computing, Springer, pp 257–265 Ferreira C (2003) Function finding and the creation of numerical constants in gene expression programming. In: Advances in soft computing, Springer, pp 257–265
Zurück zum Zitat Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence, vol 21. Springer Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence, vol 21. Springer
Zurück zum Zitat Garakani AA, Haeri SM, Khosravi A, Habibagahi G (2015) Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions. Eng Geol 195:28–41CrossRef Garakani AA, Haeri SM, Khosravi A, Habibagahi G (2015) Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions. Eng Geol 195:28–41CrossRef
Zurück zum Zitat German RM (1994) Powder metallurgy science Metal Powder Industries Federation. Princeton, New Jersey German RM (1994) Powder metallurgy science Metal Powder Industries Federation. Princeton, New Jersey
Zurück zum Zitat Ghasabkolaei N, Choobbasti AJ, Roshan N, Ghasemi SE (2017) Geotechnical properties of the soils modified with nanomaterials: a comprehensive review. Arch Civ Mech Eng 17:639–650CrossRef Ghasabkolaei N, Choobbasti AJ, Roshan N, Ghasemi SE (2017) Geotechnical properties of the soils modified with nanomaterials: a comprehensive review. Arch Civ Mech Eng 17:639–650CrossRef
Zurück zum Zitat Ghazi H, Baziar M, Mirkazemi S (2011) The effects of nano-material additives on the basic properties of soil. In: Proc of 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Hong-Kong, pp 23–27 Ghazi H, Baziar M, Mirkazemi S (2011) The effects of nano-material additives on the basic properties of soil. In: Proc of 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Hong-Kong, pp 23–27
Zurück zum Zitat Gibbs HJ, Bara JP (1967) Stability problems of collapsing soil. J Soil Mech Found Div 93:577–594CrossRef Gibbs HJ, Bara JP (1967) Stability problems of collapsing soil. J Soil Mech Found Div 93:577–594CrossRef
Zurück zum Zitat Haeri SM, Khosravi A, Garakani AA, Ghazizadeh S (2017) Effect of soil structure and disturbance on hydromechanical behavior of collapsible loessial soils. Int J Geomech 17:04016021CrossRef Haeri SM, Khosravi A, Garakani AA, Ghazizadeh S (2017) Effect of soil structure and disturbance on hydromechanical behavior of collapsible loessial soils. Int J Geomech 17:04016021CrossRef
Zurück zum Zitat Hanna A, Soliman S (2017) Experimental investigation of foundation on collapsible soils. J Geotech Geoenviron Eng 143:04017085CrossRef Hanna A, Soliman S (2017) Experimental investigation of foundation on collapsible soils. J Geotech Geoenviron Eng 143:04017085CrossRef
Zurück zum Zitat Holt W (1961) Settlement of soil foundation due to saturation. In: Proc of the 5th Int Conf on SMFE, pp 673–679 Holt W (1961) Settlement of soil foundation due to saturation. In: Proc of the 5th Int Conf on SMFE, pp 673–679
Zurück zum Zitat Hosseini A, Haeri SM, Mahvelati S, Fathi A (2019) Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils. J Rock Mech Geotech Eng 11:1055–1065CrossRef Hosseini A, Haeri SM, Mahvelati S, Fathi A (2019) Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils. J Rock Mech Geotech Eng 11:1055–1065CrossRef
Zurück zum Zitat Huang Y, Wen Z, Wang L, Zhu C (2019) Centrifuge testing of liquefaction mitigation effectiveness on sand foundations treated with nanoparticles. Eng Geol 249:249–256CrossRef Huang Y, Wen Z, Wang L, Zhu C (2019) Centrifuge testing of liquefaction mitigation effectiveness on sand foundations treated with nanoparticles. Eng Geol 249:249–256CrossRef
Zurück zum Zitat Iranpour B (2016) The influence of nanomaterials on collapsible soil treatment. Eng Geol 205:40–53CrossRef Iranpour B (2016) The influence of nanomaterials on collapsible soil treatment. Eng Geol 205:40–53CrossRef
Zurück zum Zitat Jefferson I, Rogers CD (2012) Collapsible Soils ICE Manual of Geotechnical Engineering 1:391–411 Jefferson I, Rogers CD (2012) Collapsible Soils ICE Manual of Geotechnical Engineering 1:391–411
Zurück zum Zitat Jing Y, Jia Z, Zhang Z, Lv Y, Wang L, Tao C (2019) Study on the method for determination of the maximum depth of loess collapsible under overburden pressure. Bull Eng Geol Environ 1–13 Jing Y, Jia Z, Zhang Z, Lv Y, Wang L, Tao C (2019) Study on the method for determination of the maximum depth of loess collapsible under overburden pressure. Bull Eng Geol Environ 1–13
Zurück zum Zitat Johari A, Golkarfard H (2018) Reliability analysis of unsaturated soil sites based on fundamental period throughout Shiraz Iran. Soil Dyn Earthq Eng 115:183–197CrossRef Johari A, Golkarfard H (2018) Reliability analysis of unsaturated soil sites based on fundamental period throughout Shiraz Iran. Soil Dyn Earthq Eng 115:183–197CrossRef
Zurück zum Zitat Johari, A., G. Habibagahi and A. Ghahramani (2006). "Prediction of soil–water characteristic curve using genetic programming." J Geotech Geoenviron Eng 132(5): 661-665. Johari, A., G. Habibagahi and A. Ghahramani (2006). "Prediction of soil–water characteristic curve using genetic programming." J Geotech Geoenviron Eng 132(5): 661-665.
Zurück zum Zitat Johari A, Habibagahi G, Nakhaee M (2013) Prediction of unsaturated soils effective stress parameter using gene expression programming. Sci Iran 20:1433–1444 Johari A, Habibagahi G, Nakhaee M (2013) Prediction of unsaturated soils effective stress parameter using gene expression programming. Sci Iran 20:1433–1444
Zurück zum Zitat Johari A, Nejad AH (2015) Prediction of soil-water characteristic curve using gene expression programming. Iran J Sci Technol Trans Civ Eng 39:143 Johari A, Nejad AH (2015) Prediction of soil-water characteristic curve using gene expression programming. Iran J Sci Technol Trans Civ Eng 39:143
Zurück zum Zitat Johari A, Talebi A, Heydari A (2020) Prediction of discharge flow rate beneath sheet piles using gene expression programming based on scaled boundary finite element modelling database. Sci Iran 28:645–655 Johari A, Talebi A, Heydari A (2020) Prediction of discharge flow rate beneath sheet piles using gene expression programming based on scaled boundary finite element modelling database. Sci Iran 28:645–655
Zurück zum Zitat Knight K (1961) The collapse of structure of sandy subsoils on wetting. University of the Witwatersrand, Johannesburg Knight K (1961) The collapse of structure of sandy subsoils on wetting. University of the Witwatersrand, Johannesburg
Zurück zum Zitat Krishnan J, Shukla S (2019) The behaviour of soil stabilised with nanoparticles: an extensive review of the present status and its applications. Arab J Geosci 12:436CrossRef Krishnan J, Shukla S (2019) The behaviour of soil stabilised with nanoparticles: an extensive review of the present status and its applications. Arab J Geosci 12:436CrossRef
Zurück zum Zitat Lemieux M, Léonard G, Doucet J, Leclaire LA, Viens F, Chaouki J, Bertrand F (2008) Large-scale numerical investigation of solids mixing in a V-blender using the discrete element method. Powder Technol 181:205–216CrossRef Lemieux M, Léonard G, Doucet J, Leclaire LA, Viens F, Chaouki J, Bertrand F (2008) Large-scale numerical investigation of solids mixing in a V-blender using the discrete element method. Powder Technol 181:205–216CrossRef
Zurück zum Zitat Lin, Z. and S. Wang (1988). "Collapsibility and deformation characteristics of deep-seated loess in China." Eng Geol 25(2-4): 271-282. Lin, Z. and S. Wang (1988). "Collapsibility and deformation characteristics of deep-seated loess in China." Eng Geol 25(2-4): 271-282.
Zurück zum Zitat Lutenegger AJ, Saber RT (1988) Determination of collapse potential of soils. Geotech Test J 11:173–178CrossRef Lutenegger AJ, Saber RT (1988) Determination of collapse potential of soils. Geotech Test J 11:173–178CrossRef
Zurück zum Zitat Lutenegger, A. J. a. H., G. R. (1988). "Stability of Loess,” Eng Geol." 25(2): 247-261. Lutenegger, A. J. a. H., G. R. (1988). "Stability of Loess,” Eng Geol."  25(2): 247-261.
Zurück zum Zitat Lv Q, Chang C, Zhao B, Ma B (2018) Loess soil stabilization by means of SiO 2 nanoparticles. Soil Mech Found Eng 54:409–413CrossRef Lv Q, Chang C, Zhao B, Ma B (2018) Loess soil stabilization by means of SiO 2 nanoparticles. Soil Mech Found Eng 54:409–413CrossRef
Zurück zum Zitat Miller H, Djerbib Y, Jefferson I, Smalley I (2002) Modelling the collapse of metastable loess soils. Nottingham Trent University, Nottingham Miller H, Djerbib Y, Jefferson I, Smalley I (2002) Modelling the collapse of metastable loess soils. Nottingham Trent University, Nottingham
Zurück zum Zitat Mollahasani, A., A. H. Alavi and A. H. Gandomi (2011). "Empirical modeling of plate load test moduli of soil via gene expression programming." Comput Geotech 38(2): 281-286. Mollahasani, A., A. H. Alavi and A. H. Gandomi (2011). "Empirical modeling of plate load test moduli of soil via gene expression programming." Comput Geotech 38(2): 281-286.
Zurück zum Zitat NRC (2006). Geological and geotechnical engineering in the new millennium: opportunities for research and technological innovation, National Academies Press. NRC (2006). Geological and geotechnical engineering in the new millennium: opportunities for research and technological innovation, National Academies Press.
Zurück zum Zitat Pengelly AD, Boehm DW, Rector E, Welsh JP (1997) Engineering experience with in-situ modification of collapsible and expansive soils. In: Unsaturated Soil Engineering Practice, ASCE, pp 277–298 Pengelly AD, Boehm DW, Rector E, Welsh JP (1997) Engineering experience with in-situ modification of collapsible and expansive soils. In: Unsaturated Soil Engineering Practice, ASCE, pp 277–298
Zurück zum Zitat Rogers C (1995) Types and distribution of collapsible soils. In: Genesis and properties of collapsible soils, Springer, pp 1–17 Rogers C (1995) Types and distribution of collapsible soils. In: Genesis and properties of collapsible soils, Springer, pp 1–17
Zurück zum Zitat Rollins KM, Kim J (2010) Dynamic compaction of collapsible soils based on US case histories. J Geotech Geoenviron Eng 136:1178–1186CrossRef Rollins KM, Kim J (2010) Dynamic compaction of collapsible soils based on US case histories. J Geotech Geoenviron Eng 136:1178–1186CrossRef
Zurück zum Zitat Rollins KM, Rogers GW (1994) Mitigation measures for small structures on collapsible alluvial soils. J Geotech Eng 120:1533–1553CrossRef Rollins KM, Rogers GW (1994) Mitigation measures for small structures on collapsible alluvial soils. J Geotech Eng 120:1533–1553CrossRef
Zurück zum Zitat Santos EC, Palmeira EM, Bathurst RJ (2013) Behaviour of a geogrid reinforced wall built with recycled construction and demolition waste backfill on a collapsible foundation. Geotext Geomembr 39:9–19CrossRef Santos EC, Palmeira EM, Bathurst RJ (2013) Behaviour of a geogrid reinforced wall built with recycled construction and demolition waste backfill on a collapsible foundation. Geotext Geomembr 39:9–19CrossRef
Zurück zum Zitat Sarli JM, Hadadi F, Bagheri RA (2020) Stabilizing geotechnical properties of loess soil by mixing recycled polyester fiber and nano-SiO 2. Geotech Geol Eng 38:1151–1163CrossRef Sarli JM, Hadadi F, Bagheri RA (2020) Stabilizing geotechnical properties of loess soil by mixing recycled polyester fiber and nano-SiO 2. Geotech Geol Eng 38:1151–1163CrossRef
Zurück zum Zitat Singhai SK, Chopra V, Nagar M, Jain N, Trivedi P (2010) Scale up factor determination of V blender: an overview. Der Pharmacia Lett 2:408–433 Singhai SK, Chopra V, Nagar M, Jain N, Trivedi P (2010) Scale up factor determination of V blender: an overview. Der Pharmacia Lett 2:408–433
Zurück zum Zitat Smalley I, Ng’ambi S, (2019) Problems with collapsible soils: particle types and inter-particle bonding. Open Geosci 11:829–836CrossRef Smalley I, Ng’ambi S, (2019) Problems with collapsible soils: particle types and inter-particle bonding. Open Geosci 11:829–836CrossRef
Zurück zum Zitat Swain AKP, Roy GK (2011) Mechanical operations. McGraw-Hill Education, New York Swain AKP, Roy GK (2011) Mechanical operations. McGraw-Hill Education, New York
Zurück zum Zitat Tabarsa A, Latifi N, Meehan CL, Manahiloh KN (2018) Laboratory investigation and field evaluation of loess improvement using nanoclay–a sustainable material for construction. Const Build Mater 158:454–463CrossRef Tabarsa A, Latifi N, Meehan CL, Manahiloh KN (2018) Laboratory investigation and field evaluation of loess improvement using nanoclay–a sustainable material for construction. Const Build Mater 158:454–463CrossRef
Zurück zum Zitat Tong Z (2007) Water-based suspension of polymer nanoclay composite prepared via miniemulsion polymerization. Georgia Institute of Technology, Atlanta Tong Z (2007) Water-based suspension of polymer nanoclay composite prepared via miniemulsion polymerization. Georgia Institute of Technology, Atlanta
Zurück zum Zitat Valizade N, Tabarsa A (2020) Laboratory investigation of plant root reinforcement on the mechanical behaviour and collapse potential of loess soil. Eur J Environ Civ Eng 1–17 Valizade N, Tabarsa A (2020) Laboratory investigation of plant root reinforcement on the mechanical behaviour and collapse potential of loess soil. Eur J Environ Civ Eng 1–17
Zurück zum Zitat Wang J, Zhang D, Chen C, Wang S (2020) Measurement and modelling of stress-dependent water permeability of collapsible loess in China. Eng Geol 266:105393 Wang J, Zhang D, Chen C, Wang S (2020) Measurement and modelling of stress-dependent water permeability of collapsible loess in China. Eng Geol 266:105393
Zurück zum Zitat Wilson MA, Tran NH, Milev AS, Kannangara GK, Volk H, Lu GM (2008) Nanomaterials in soils. Geoderma 146:291–302CrossRef Wilson MA, Tran NH, Milev AS, Kannangara GK, Volk H, Lu GM (2008) Nanomaterials in soils. Geoderma 146:291–302CrossRef
Zurück zum Zitat Zhang G, Germaine J, Whittle A, Ladd C (2004) Index properties of a highly weathered old alluvium. Geotechnique 54:441–451CrossRef Zhang G, Germaine J, Whittle A, Ladd C (2004) Index properties of a highly weathered old alluvium. Geotechnique 54:441–451CrossRef
Zurück zum Zitat Zimbardo M, Ercoli L, Mistretta MC, Scaffaro R, Megna B (2020) Collapsible intact soil stabilisation using non-aqueous polymeric vehicle. Eng Geol 264:105334 Zimbardo M, Ercoli L, Mistretta MC, Scaffaro R, Megna B (2020) Collapsible intact soil stabilisation using non-aqueous polymeric vehicle. Eng Geol 264:105334
Metadaten
Titel
A predictive model based on the experimental investigation of collapsible soil treatment using nano-clay in the Sivand Dam region, Iran
verfasst von
A. Johari
H. Golkarfard
F. Davoudi
A. Fazeli
Publikationsdatum
09.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 9/2021
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-021-02360-w

Weitere Artikel der Ausgabe 9/2021

Bulletin of Engineering Geology and the Environment 9/2021 Zur Ausgabe