Skip to main content
Erschienen in: Calcolo 3/2018

01.09.2018

Space–time hp-approximation of parabolic equations

verfasst von: Denis Devaud, Christoph Schwab

Erschienen in: Calcolo | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new space–time finite element method for the solution of parabolic partial differential equations is introduced. In a mesh and degree-dependent norm, it is first shown that the discrete bilinear form for the space–time problem is both coercive and continuous, yielding existence and uniqueness of the associated discrete solution. In a second step, error estimates in this mesh-dependent norm are derived. In particular, we show that combining low-order elements for the space variable together with an hp-approximation of the problem with respect to the temporal variable allows us to decrease the optimal convergence rates for the approximation of elliptic problems only by a logarithmic factor. For simultaneous space–time hp-discretization in both, the spatial as well as the temporal variable, overall exponential convergence in mesh-degree dependent norms on the space–time cylinder is proved, under analytic regularity assumptions on the solution with respect to the spatial variable. Numerical results for linear model problems confirming exponential convergence are presented.
Literatur
1.
Zurück zum Zitat Andreev, R.: Stability of sparse space–time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33, 242–260 (2013)MathSciNetCrossRef Andreev, R.: Stability of sparse space–time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33, 242–260 (2013)MathSciNetCrossRef
2.
3.
Zurück zum Zitat Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007). Theory, fast solvers, and applications in elasticity theory. Translated from the German by Larry L. Schumaker Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007). Theory, fast solvers, and applications in elasticity theory. Translated from the German by Larry L. Schumaker
4.
Zurück zum Zitat Chemin, J.-Y.: Perfect Incompressible Fluids, Volume 14 of Oxford Lecture Series in Mathematics and Its Applications. The Clarendon Press, Oxford University Press, New York (1998). Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie Chemin, J.-Y.: Perfect Incompressible Fluids, Volume 14 of Oxford Lecture Series in Mathematics and Its Applications. The Clarendon Press, Oxford University Press, New York (1998). Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie
6.
Zurück zum Zitat Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Volume 159 of Applied Mathematical Sciences. Springer, New York (2004)CrossRef Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Volume 159 of Applied Mathematical Sciences. Springer, New York (2004)CrossRef
7.
Zurück zum Zitat Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and Time Domain Decomposition Methods, vol. 9, pp. 69–113. Springer, Cham (2015) Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and Time Domain Decomposition Methods, vol. 9, pp. 69–113. Springer, Cham (2015)
8.
Zurück zum Zitat Gaspoz, F.D., Morin, P.: Convergence rates for adaptive finite elements. IMA J. Numer. Anal. 29, 917–936 (2009)MathSciNetCrossRef Gaspoz, F.D., Morin, P.: Convergence rates for adaptive finite elements. IMA J. Numer. Anal. 29, 917–936 (2009)MathSciNetCrossRef
9.
Zurück zum Zitat Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Advanced Publishing Program, Boston (1985) Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Advanced Publishing Program, Boston (1985)
10.
Zurück zum Zitat Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory, Volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham (2016) Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory, Volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham (2016)
11.
Zurück zum Zitat Kunoth, A., Schwab, C.: Sparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problems. SIAM/ASA J. Uncertain. Quantif. 4, 1034–1059 (2016)MathSciNetCrossRef Kunoth, A., Schwab, C.: Sparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problems. SIAM/ASA J. Uncertain. Quantif. 4, 1034–1059 (2016)MathSciNetCrossRef
12.
Zurück zum Zitat Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics, Volume 49 of Applied Mathematical Sciences. Springer, New York (1985). Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]CrossRef Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics, Volume 49 of Applied Mathematical Sciences. Springer, New York (1985). Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]CrossRef
13.
Zurück zum Zitat Langer, U., Moore, S.E., Neumüller, M.: Space–time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)MathSciNetCrossRef Langer, U., Moore, S.E., Neumüller, M.: Space–time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)MathSciNetCrossRef
14.
Zurück zum Zitat Larsson, S., Molteni, M.: Numerical solution of parabolic problems based on a weak space–time formulation. Comput. Methods Appl. Math. 17, 65–84 (2017)MathSciNetCrossRef Larsson, S., Molteni, M.: Numerical solution of parabolic problems based on a weak space–time formulation. Comput. Methods Appl. Math. 17, 65–84 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Mollet, C.: Stability of Petrov–Galerkin discretizations: application to the space–time weak formulation for parabolic evolution problems. Comput. Methods Appl. Math. 14, 231–255 (2014)MathSciNetCrossRef Mollet, C.: Stability of Petrov–Galerkin discretizations: application to the space–time weak formulation for parabolic evolution problems. Comput. Methods Appl. Math. 14, 231–255 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat Schötzau, D., Schwab, C.: An \(hp\) a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37, 207–232 (2000)MathSciNetCrossRef Schötzau, D., Schwab, C.: An \(hp\) a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37, 207–232 (2000)MathSciNetCrossRef
17.
Zurück zum Zitat Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38, 837–875 (2000)MathSciNetCrossRef Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38, 837–875 (2000)MathSciNetCrossRef
18.
Zurück zum Zitat Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods, Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998). Theory and applications in solid and fluid mechanics Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods, Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998). Theory and applications in solid and fluid mechanics
19.
Zurück zum Zitat Schwab, C., Stevenson, R.: Space–time adaptive wavelet methods for parabolic evolution problems. Math. Comp. 78, 1293–1318 (2009)MathSciNetCrossRef Schwab, C., Stevenson, R.: Space–time adaptive wavelet methods for parabolic evolution problems. Math. Comp. 78, 1293–1318 (2009)MathSciNetCrossRef
20.
Zurück zum Zitat Schwab, C., Stevenson, R.: Fractional space–time variational formulations of (Navier–) Stokes equations. SIAM J. Math. Anal. 49, 2442–2467 (2017)MathSciNetCrossRef Schwab, C., Stevenson, R.: Fractional space–time variational formulations of (Navier–) Stokes equations. SIAM J. Math. Anal. 49, 2442–2467 (2017)MathSciNetCrossRef
21.
Zurück zum Zitat Steinbach, O.: Space–time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15, 551–566 (2015)MathSciNetMATH Steinbach, O.: Space–time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15, 551–566 (2015)MathSciNetMATH
22.
Zurück zum Zitat Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Volume 25 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006) Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Volume 25 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006)
23.
Zurück zum Zitat Werder, T., Gerdes, K., Schötzau, D., Schwab, C.: \(hp\)-discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190, 6685–6708 (2001)MathSciNetCrossRef Werder, T., Gerdes, K., Schötzau, D., Schwab, C.: \(hp\)-discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190, 6685–6708 (2001)MathSciNetCrossRef
Metadaten
Titel
Space–time hp-approximation of parabolic equations
verfasst von
Denis Devaud
Christoph Schwab
Publikationsdatum
01.09.2018
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 3/2018
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0275-2

Weitere Artikel der Ausgabe 3/2018

Calcolo 3/2018 Zur Ausgabe

Premium Partner