Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 9/2022

25.06.2022 | Original Paper

Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil

verfasst von: Muhammad Hamza, Zhihong Nie, Mubashir Aziz, Nauman Ijaz, Zain Ijaz, Zia ur Rehman

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents a comprehensive study on the efficacy of xanthan gum (XG) biopolymer as a green construction material in treating problematic weak subgrade soil (i.e., expansive soil). In this regard, a wide range of geotechnical properties i.e., compaction, unconfined compressive strength (UCS), elastic modulus (E50), energy absorption capacity (Ev), soaked and unsoaked California bearing ratio (CBR), swelling potential, consolidation parameters along with microstructural studies of untreated and treated soils were investigated. The soil was treated with varying percentages of XG (i.e., 0, 0.5, 1.0, 1.5, 2.0, and 5.0%) considering the long-term aging period (i.e., 0, 4, 7, 14, 28, and 60 days). Results showed a slight decrease in the maximum dry density of treated soil with increased optimum moisture content. At an optimum XG content of 1.5%, the strength parameters, i.e., UCS-value, E50, Ev, soaked and unsoaked CBR, were significantly increased by 1.8–9 orders of magnitude, transforming the weak subgrade into a hard-quality subgrade for pavement construction. In addition, compression and rebound indices were significantly reduced by 83 and 82%, while swell percentage and pressure were decreased by 79 and 86%, respectively. The microstructural studies showed the cross-linking and binding of soil grains by cementitious hydrogel, which is responsible for ameliorating geotechnical parameters. Based on the findings, XG biopolymer was found to be a promising green construction material for the amelioration of problematic weak subgrade soil.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ali M, Aziz M, Hamza M, Madni MF (2020) Engineering properties of expansive soil treated with polypropylene fibers. Geomech Eng 22:227–236 Ali M, Aziz M, Hamza M, Madni MF (2020) Engineering properties of expansive soil treated with polypropylene fibers. Geomech Eng 22:227–236
Zurück zum Zitat Anandha Kumar S, Sujatha ER (2021b) Compaction and permeability characteristics of biopolymer-treated soil. In: lecture notes in civil engineering. pp 107–117 Anandha Kumar S, Sujatha ER (2021b) Compaction and permeability characteristics of biopolymer-treated soil. In: lecture notes in civil engineering. pp 107–117
Zurück zum Zitat ASTM D1557-12e1 (2012), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM International, West Conshohocken, PA, www.astm.org. ASTM D1557-12e1 (2012), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM International, West Conshohocken, PA, www.​astm.​org.
Zurück zum Zitat ASTM D1883-16 (2016), Standard Test Method for California Bearing Ratio (CBR) of Laboratory Compacted Soils, ASTM International, West Conshohocken, PA, www.astm.org. ASTM D1883-16 (2016), Standard Test Method for California Bearing Ratio (CBR) of Laboratory Compacted Soils, ASTM International, West Conshohocken, PA, www.​astm.​org.
Zurück zum Zitat ASTM D2166/D2166M-16 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, www.astm.org. ASTM D2166/D2166M-16 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, www.​astm.​org.
Zurück zum Zitat ASTM D2435/D2435M-11 (2011), Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, PA, www.astm.org. ASTM D2435/D2435M-11 (2011), Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, PA, www.​astm.​org.
Zurück zum Zitat ASTM D2487-17 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org ASTM D2487-17 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.​astm.​org
Zurück zum Zitat ASTM D422-63e2 (2007), Standard Test Method for Particle-Size Analysis of Soils, ASTM International, West Conshohocken, PA, www.astm.org ASTM D422-63e2 (2007), Standard Test Method for Particle-Size Analysis of Soils, ASTM International, West Conshohocken, PA, www.​astm.​org
Zurück zum Zitat ASTM D4318-17e1 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.astm.org ASTM D4318-17e1 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.​astm.​org
Zurück zum Zitat ASTM D698-12 (2021), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, www.astm.org ASTM D698-12 (2021), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, www.​astm.​org
Zurück zum Zitat ASTM D854e14 (2014). Test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, www.astm.org ASTM D854e14 (2014). Test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, www.​astm.​org
Zurück zum Zitat Ayeldeen MK, Negm AM, El Sawwaf MA (2016) Evaluating the physical characteristics of biopolymer/soil mixtures. Arab J Geosci 9:371CrossRef Ayeldeen MK, Negm AM, El Sawwaf MA (2016) Evaluating the physical characteristics of biopolymer/soil mixtures. Arab J Geosci 9:371CrossRef
Zurück zum Zitat Aziz M (2020) Using grain size to predict engineering properties of natural sands in Pakistan. Geomech Eng 22:165–171 Aziz M (2020) Using grain size to predict engineering properties of natural sands in Pakistan. Geomech Eng 22:165–171
Zurück zum Zitat Barani OR, Barfar P (2021) Effect of xanthan gum biopolymer on fracture properties of clay. J Mater Civ Eng 33:4020426CrossRef Barani OR, Barfar P (2021) Effect of xanthan gum biopolymer on fracture properties of clay. J Mater Civ Eng 33:4020426CrossRef
Zurück zum Zitat Cabalar AF, Awraheem MH, Khalaf MM (2018) Geotechnical properties of a low-plasticity clay with biopolymer. J Mater Civ Eng 30:4018170CrossRef Cabalar AF, Awraheem MH, Khalaf MM (2018) Geotechnical properties of a low-plasticity clay with biopolymer. J Mater Civ Eng 30:4018170CrossRef
Zurück zum Zitat Chen R, Lee I, Zhang L (2015) Biopolymer stabilization of mine tailings for dust control. J Geotech Geoenvironmental Eng 141:4014100CrossRef Chen R, Lee I, Zhang L (2015) Biopolymer stabilization of mine tailings for dust control. J Geotech Geoenvironmental Eng 141:4014100CrossRef
Zurück zum Zitat Congress IR (2015) Guidelines for the design of flexible pavements for low volume rural roads. IRC SP 72–2015 Congress IR (2015) Guidelines for the design of flexible pavements for low volume rural roads. IRC SP 72–2015
Zurück zum Zitat Das BM, Sobhan K (2013) Principles of geotechnical engineering, 8th edn. Cengage Learning, Stamford Das BM, Sobhan K (2013) Principles of geotechnical engineering, 8th edn. Cengage Learning, Stamford
Zurück zum Zitat Fatehi H, Ong DEL, Yu J, Chang I (2021) Biopolymers as green binders for soil improvement in geotechnical applications: a review. Geosciences 11:291CrossRef Fatehi H, Ong DEL, Yu J, Chang I (2021) Biopolymers as green binders for soil improvement in geotechnical applications: a review. Geosciences 11:291CrossRef
Zurück zum Zitat Ijaz N, Ye W, Ur Rehman Z, Dai F, Ijaz Z (2022c) Numerical study on stability of lignosulphonate-based stabilized surficial layer of unsaturated expansive soil slope considering hydro-mechanical effect. Transp Geotech 32:100697CrossRef Ijaz N, Ye W, Ur Rehman Z, Dai F, Ijaz Z (2022c) Numerical study on stability of lignosulphonate-based stabilized surficial layer of unsaturated expansive soil slope considering hydro-mechanical effect. Transp Geotech 32:100697CrossRef
Zurück zum Zitat Obrzud RF (2010) On the use of the hardening soil small strain model in geotechnical practice. Numer Geotech Struct 16:1–17 Obrzud RF (2010) On the use of the hardening soil small strain model in geotechnical practice. Numer Geotech Struct 16:1–17
Zurück zum Zitat Seber GA, Lee AJ (2012) Linear regression analysis. John Wiley & Sons Seber GA, Lee AJ (2012) Linear regression analysis. John Wiley & Sons
Zurück zum Zitat Singh SP, Das R (2020) Geo-engineering properties of expansive soil treated with xanthan gum biopolymer. Geomech Geoengin 15:107–122CrossRef Singh SP, Das R (2020) Geo-engineering properties of expansive soil treated with xanthan gum biopolymer. Geomech Geoengin 15:107–122CrossRef
Zurück zum Zitat Specifications G (1998) National Highway Authority (NHA), NHA Headquarters, 27-Mauve Area. G-9/1, Islamabad, Pakistan Specifications G (1998) National Highway Authority (NHA), NHA Headquarters, 27-Mauve Area. G-9/1, Islamabad, Pakistan
Zurück zum Zitat Tavallaie R, Talebpour Z, Azad J, Soudi MR (2011) Simultaneous determination of pyruvate and acetate levels in xanthan biopolymer by infrared spectroscopy: effect of spectral pre-processing for solid-state analysis. Food Chem 124:1124–1130CrossRef Tavallaie R, Talebpour Z, Azad J, Soudi MR (2011) Simultaneous determination of pyruvate and acetate levels in xanthan biopolymer by infrared spectroscopy: effect of spectral pre-processing for solid-state analysis. Food Chem 124:1124–1130CrossRef
Metadaten
Titel
Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil
verfasst von
Muhammad Hamza
Zhihong Nie
Mubashir Aziz
Nauman Ijaz
Zain Ijaz
Zia ur Rehman
Publikationsdatum
25.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 9/2022
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-022-02347-5

Weitere Artikel der Ausgabe 9/2022

Clean Technologies and Environmental Policy 9/2022 Zur Ausgabe