Skip to main content
Erschienen in: Journal of Geographical Systems 4/2015

01.10.2015 | Original Article

Random effects specifications in eigenvector spatial filtering: a simulation study

verfasst von: Daisuke Murakami, Daniel A. Griffith

Erschienen in: Journal of Geographical Systems | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Eigenvector spatial filtering (ESF) is becoming a popular way to address spatial dependence. Recently, a random effects specification of ESF (RE-ESF) is receiving considerable attention because of its usefulness for spatial dependence analysis considering spatial confounding. The objective of this study was to analyze theoretical properties of RE-ESF and extend it to overcome some of its disadvantages. We first compare the properties of RE-ESF and ESF with geostatistical and spatial econometric models. There, we suggest two major disadvantages of RE-ESF: it is specific to its selected spatial connectivity structure, and while the current form of RE-ESF eliminates the spatial dependence component confounding with explanatory variables to stabilize the parameter estimation, the elimination can yield biased estimates. RE-ESF is extended to cope with these two problems. A computationally efficient residual maximum likelihood estimation is developed for the extended model. Effectiveness of the extended RE-ESF is examined by a comparative Monte Carlo simulation. The main findings of this simulation are as follows: Our extension successfully reduces errors in parameter estimates; in many cases, parameter estimates of our RE-ESF are more accurate than other ESF models; the elimination of the spatial component confounding with explanatory variables results in biased parameter estimates; efficiency of an accuracy maximization-based conventional ESF is comparable to RE-ESF in many cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The expectation of MC, E[MC], equals \( - \frac{1}{N - 1} \) when M = I11′/N, whereas it equals \( - \frac{N}{{{\mathbf{1^{\prime}C1}}}}\frac{{tr[({\mathbf{X^{\prime}X}})^{ - 1} {\mathbf{X^{\prime}CX}}]}}{N - K - 1} \) when M = IX(XX) -1 X′. E[MC] < MC, MC < E[MC], and MC = E[MC] imply positive, negative, and no spatial dependence, respectively.
 
2
\( {\hat{\mathbf{\beta }}} \) in Eq. (5) is identical to the generalized least squared estimator (Henderson 1975).
 
3
Models with known mean structure are widely applied in geostatistics (e.g., Cressie and Wikle 2011).
 
4
Although the covariance matrix of ω usually is defined by σ NS 2 I + σ γ 2 (I + C), where σ NS 2 is a variance parameter, because it can be expanded as follows: σ NS 2 I + σ γ 2 (I + C) = (σ NS 2 +σ 2γ)I + σ γ 2 C = σ 2 I + σ γ 2 C, the assumption of zero diagonal elements is consistent with the usual assumption.
 
5
When M = I11 /N, RE-ESF approximates the geostatistical model with known constant mean.
 
6
The asymmetric matrix W has real eigenvalues and eigenvectors (see Griffith 2000).
 
7
Expanding the variance of in Eq. (22) as \( {\text{Var}}[{\mathbf{E\gamma }}] = \frac{{{\mathbf{\gamma^{\prime}E^{\prime}E\gamma }}}}{N} = \frac{{{\mathbf{\gamma^{\prime}\gamma }}}}{N} = \frac{1}{N}\sum\nolimits_{l} {{\text{diag}}[\sigma_{\gamma }^{2} k{\varvec{\Lambda}}(\alpha )]_{l} } = k\frac{{\sigma_{\gamma }^{2} }}{N}\sum\nolimits_{l} {\lambda_{l}^{\alpha } } \), where \( {\text{diag}}[ \cdot ]_{l} \) returns the lth diagonal of the matrix \( \cdot \). This equation shows that Var[] equals σ γ 2 when \( k = \frac{N}{{\sum\nolimits_{l} {\lambda_{l}^{\alpha } } }} \).
 
8
Equation (5) is expanded using X E = 0, which M = IX(X X) -1 X implies, as \( \left[ {\begin{array}{*{20}c} {{\hat{\mathbf{\beta }}}} \\ {{\hat{\mathbf{\gamma }}}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{X^{\prime}X}}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{I}} + \frac{{\sigma_{{}}^{2} }}{{\sigma_{\gamma }^{2} }}{\varvec{\Lambda}}^{ - 1} } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{*{20}c} {{\mathbf{X^{\prime}y}}} \\ {{\mathbf{E^{\prime}y}}} \\ \end{array} } \right] \) \( = \left[ {\begin{array}{*{20}c} {({\mathbf{X^{\prime}X}})^{ - 1} {\mathbf{X^{\prime}y}}} \\ {\left( {{\mathbf{I}} + \frac{{\sigma_{{}}^{2} }}{{\sigma_{\gamma }^{2} }}{\varvec{\Lambda}}^{ - 1} } \right)^{ - 1} {\mathbf{E^{\prime}y}}} \\ \end{array} } \right] \). Thus, \( {\hat{\mathbf{\beta }}} \) equals the estimate of the OLS estimate.
 
Literatur
Zurück zum Zitat Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23(2):112–131CrossRef Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23(2):112–131CrossRef
Zurück zum Zitat Arbia G, Fingleton B (2008) New spatial econometric techniques and applications in Regional Science. Pap Reg Sci 87(3):311–317CrossRef Arbia G, Fingleton B (2008) New spatial econometric techniques and applications in Regional Science. Pap Reg Sci 87(3):311–317CrossRef
Zurück zum Zitat Blancheta FG, Legendre P, Borcard D (2008) Modelling directional spatial process in ecological data. Ecol Model 215(4):325–336CrossRef Blancheta FG, Legendre P, Borcard D (2008) Modelling directional spatial process in ecological data. Ecol Model 215(4):325–336CrossRef
Zurück zum Zitat Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153(1–2):51–68CrossRef Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153(1–2):51–68CrossRef
Zurück zum Zitat Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344CrossRef Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344CrossRef
Zurück zum Zitat Chun Y (2014) Analyzing space–time crime incidents using eigenvector spatial filtering: an application to vehicle burglary. Geogr Anal 46(2):165–184CrossRef Chun Y (2014) Analyzing space–time crime incidents using eigenvector spatial filtering: an application to vehicle burglary. Geogr Anal 46(2):165–184CrossRef
Zurück zum Zitat Chun Y, Griffith DA (2011) Modeling network autocorrelation in space–time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536CrossRef Chun Y, Griffith DA (2011) Modeling network autocorrelation in space–time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536CrossRef
Zurück zum Zitat Chun Y, Griffith DA (2013) Spatial statistics and geostatistics: theory and applications for geographic information science and technology. SAGE, London Chun Y, Griffith DA (2013) Spatial statistics and geostatistics: theory and applications for geographic information science and technology. SAGE, London
Zurück zum Zitat Chun Y, Griffith DA (2014) A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model. Spat Stat 10:1–11MathSciNetCrossRef Chun Y, Griffith DA (2014) A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model. Spat Stat 10:1–11MathSciNetCrossRef
Zurück zum Zitat Cressie N (1993) Statistics for spatial data. John Wiley & Sons, New York Cressie N (1993) Statistics for spatial data. John Wiley & Sons, New York
Zurück zum Zitat Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New YorkMATH Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New YorkMATH
Zurück zum Zitat Cuaresma CJ, Feldkircher M (2013) Spatial filtering, model uncertainty and the speed of income convergence in Europe. J Appl Econom 28(4):720–741CrossRef Cuaresma CJ, Feldkircher M (2013) Spatial filtering, model uncertainty and the speed of income convergence in Europe. J Appl Econom 28(4):720–741CrossRef
Zurück zum Zitat Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196(3–4):483–493CrossRef Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196(3–4):483–493CrossRef
Zurück zum Zitat Drineas P, Mahoney MW (2005) On the Nyström method for approximating a gram matrix for improved kernel-based learning. J Mach Learn Res 6:2153–2175MathSciNetMATH Drineas P, Mahoney MW (2005) On the Nyström method for approximating a gram matrix for improved kernel-based learning. J Mach Learn Res 6:2153–2175MathSciNetMATH
Zurück zum Zitat Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28CrossRef Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28CrossRef
Zurück zum Zitat Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in European Union. J Reg Sci 48(5):969–989CrossRef Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in European Union. J Reg Sci 48(5):969–989CrossRef
Zurück zum Zitat Franzese RJ, Hays JC (2014) Testing for spatial-autoregressive lag versus (unobserved) spatially correlated error-components. Benjamin F. Shambaugh conference: New frontiers in the study of policy diffusion, University of Iowa, Iowa City Franzese RJ, Hays JC (2014) Testing for spatial-autoregressive lag versus (unobserved) spatially correlated error-components. Benjamin F. Shambaugh conference: New frontiers in the study of policy diffusion, University of Iowa, Iowa City
Zurück zum Zitat Getis A (1990) Screening for spatial dependence in regression analysis. Paper Reg Sci Assoc 69(1):69–81CrossRef Getis A (1990) Screening for spatial dependence in regression analysis. Paper Reg Sci Assoc 69(1):69–81CrossRef
Zurück zum Zitat Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140CrossRef Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140CrossRef
Zurück zum Zitat Getis A, Ord K (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRef Getis A, Ord K (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRef
Zurück zum Zitat Griffith DA (1996) Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying georeferenced data. Can Geogr 40(4):351–367CrossRef Griffith DA (1996) Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying georeferenced data. Can Geogr 40(4):351–367CrossRef
Zurück zum Zitat Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebr Appl 321(1–3):95–112MathSciNetCrossRefMATH Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebr Appl 321(1–3):95–112MathSciNetCrossRefMATH
Zurück zum Zitat Griffith DA (2003) Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Springer, BerlinCrossRef Griffith DA (2003) Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Springer, BerlinCrossRef
Zurück zum Zitat Griffith DA (2004a) A spatial filtering specification for the autologistic model. Environ Plan 36(10):1791–1811CrossRef Griffith DA (2004a) A spatial filtering specification for the autologistic model. Environ Plan 36(10):1791–1811CrossRef
Zurück zum Zitat Griffith DA (2004b) Distributional properties of georeferenced random variables based on the eigenfunction spatial filter. J Geogr Syst 6(3):263–288MathSciNetCrossRef Griffith DA (2004b) Distributional properties of georeferenced random variables based on the eigenfunction spatial filter. J Geogr Syst 6(3):263–288MathSciNetCrossRef
Zurück zum Zitat Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355CrossRef Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355CrossRef
Zurück zum Zitat Griffith DA (2008) Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ Plan 40(11):2751–2769CrossRef Griffith DA (2008) Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ Plan 40(11):2751–2769CrossRef
Zurück zum Zitat Griffith DA (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11(2):117–140CrossRef Griffith DA (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11(2):117–140CrossRef
Zurück zum Zitat Griffith DA (2010) Spatial filtering. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 301–318CrossRef Griffith DA (2010) Spatial filtering. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 301–318CrossRef
Zurück zum Zitat Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput Environ Urban Syst 35(2):140–149MathSciNetCrossRef Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput Environ Urban Syst 35(2):140–149MathSciNetCrossRef
Zurück zum Zitat Griffith DA, Chun Y (2013) Spatial autocorrelation and spatial filtering. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, Berlin, pp 1477–1507 Griffith DA, Chun Y (2013) Spatial autocorrelation and spatial filtering. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, Berlin, pp 1477–1507
Zurück zum Zitat Griffith DA, Csillag F (1993) Exploring relationship between semi-variogram and spatial autoregressive models. Paper Reg Sci 72(3):283–295CrossRef Griffith DA, Csillag F (1993) Exploring relationship between semi-variogram and spatial autoregressive models. Paper Reg Sci 72(3):283–295CrossRef
Zurück zum Zitat Griffith DA, Fischer MM (2013) Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. J Geogr Syst 15(3):291–317CrossRef Griffith DA, Fischer MM (2013) Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. J Geogr Syst 15(3):291–317CrossRef
Zurück zum Zitat Griffith DA, Layne L (1997) Uncovering relationships between geo-statistical and spatial autoregressive models. In: American Statistical Association (ed) Proceedings of the section on statistics and the environment 1997, American Statistical Association, Alexandria, Virginia, pp 91–96 Griffith DA, Layne L (1997) Uncovering relationships between geo-statistical and spatial autoregressive models. In: American Statistical Association (ed) Proceedings of the section on statistics and the environment 1997, American Statistical Association, Alexandria, Virginia, pp 91–96
Zurück zum Zitat Griffith DA, Paelinck JHP (2011) Non–standard spatial statistics and spatial econometrics. Springer, BerlinCrossRef Griffith DA, Paelinck JHP (2011) Non–standard spatial statistics and spatial econometrics. Springer, BerlinCrossRef
Zurück zum Zitat Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecol 87(10):2603–2613CrossRef Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecol 87(10):2603–2613CrossRef
Zurück zum Zitat Grimpe C, Patuelli R (2009) Regional knowledge production in nanomaterials: a spatial filtering approach. Ann Reg Sci 46(3):519–541CrossRef Grimpe C, Patuelli R (2009) Regional knowledge production in nanomaterials: a spatial filtering approach. Ann Reg Sci 46(3):519–541CrossRef
Zurück zum Zitat Haskard KA, Lark RM (2009) Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma 153(1–2):18–28CrossRef Haskard KA, Lark RM (2009) Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma 153(1–2):18–28CrossRef
Zurück zum Zitat Helbich M, Arsanjani JJ (2014) Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr Geogr Inf Sci 42(2):134–148CrossRef Helbich M, Arsanjani JJ (2014) Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr Geogr Inf Sci 42(2):134–148CrossRef
Zurück zum Zitat Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447CrossRefPubMedMATH Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447CrossRefPubMedMATH
Zurück zum Zitat Hodges JS (2013) Richly parameterized linear models: additive, time series, and spatial models using random effects. CRC Press, Boca Raton Hodges JS (2013) Richly parameterized linear models: additive, time series, and spatial models using random effects. CRC Press, Boca Raton
Zurück zum Zitat Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc B Stat Methodol 75(1):139–159MathSciNetCrossRef Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc B Stat Methodol 75(1):139–159MathSciNetCrossRef
Zurück zum Zitat Jacob GB, Muturi EJ, Caamano EX, Gunter JT et al (2008) Hydrological modeling of geophysical parameters of arboviral and protozoan disease vectors in Internally Displaced People camps in Gulu, Uganda. Int J Health Geogr 7:11PubMedCentralCrossRefPubMed Jacob GB, Muturi EJ, Caamano EX, Gunter JT et al (2008) Hydrological modeling of geophysical parameters of arboviral and protozoan disease vectors in Internally Displaced People camps in Gulu, Uganda. Int J Health Geogr 7:11PubMedCentralCrossRefPubMed
Zurück zum Zitat Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier Science BV, Amsterdam Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier Science BV, Amsterdam
Zurück zum Zitat LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall/CRC, Boca RatonCrossRefMATH LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall/CRC, Boca RatonCrossRefMATH
Zurück zum Zitat LeSage JP, Pace RK (2014) The biggest myth in spatial econometrics. Econom 2(4):217–249 LeSage JP, Pace RK (2014) The biggest myth in spatial econometrics. Econom 2(4):217–249
Zurück zum Zitat LeSage JP, Parent O (2007) Bayesian model averaging for spatial econometric models. Geogr Anal 39(3):241–267CrossRef LeSage JP, Parent O (2007) Bayesian model averaging for spatial econometric models. Geogr Anal 39(3):241–267CrossRef
Zurück zum Zitat Moniruzzaman M, Paez A (2012) A model-based approach to select case sites for walkability audits. Health Place 18(6):1323–1334CrossRefPubMed Moniruzzaman M, Paez A (2012) A model-based approach to select case sites for walkability audits. Health Place 18(6):1323–1334CrossRefPubMed
Zurück zum Zitat Moran PAP (1950) Notes on continuous stochastic phenomena. Biom 37(1/2):17–23MATH Moran PAP (1950) Notes on continuous stochastic phenomena. Biom 37(1/2):17–23MATH
Zurück zum Zitat Pace RK, LeSage JP (2010) Omitted variable biases of OLS and spatial lag models. In: Páez A, Gallo J, Buliung RN, Dall’erba S (eds) Progress in spatial analysis. Springer, Berlin, pp 17–28CrossRef Pace RK, LeSage JP (2010) Omitted variable biases of OLS and spatial lag models. In: Páez A, Gallo J, Buliung RN, Dall’erba S (eds) Progress in spatial analysis. Springer, Berlin, pp 17–28CrossRef
Zurück zum Zitat Pace RK, LeSage JP, Zhu S (2013) Interpretation and computation of estimates from regression models using spatial filtering. Spat Econ Anal 8(3):352–369CrossRef Pace RK, LeSage JP, Zhu S (2013) Interpretation and computation of estimates from regression models using spatial filtering. Spat Econ Anal 8(3):352–369CrossRef
Zurück zum Zitat Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time models for German unemployment data. Int Reg Sci Rev 34(2):253–280CrossRef Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time models for German unemployment data. Int Reg Sci Rev 34(2):253–280CrossRef
Zurück zum Zitat Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecol Soc Am 87(10):2614–2625 Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecol Soc Am 87(10):2614–2625
Zurück zum Zitat Pintore A, Holmes CC (2004) Non-stationary covariance functions via spatially adaptive spectra. University of Oxford, Oxford Pintore A, Holmes CC (2004) Non-stationary covariance functions via spatially adaptive spectra. University of Oxford, Oxford
Zurück zum Zitat Scherngell T, Lata R (2013) Towards an integrated European Research Area? Findings from eigenvector spatially filtered spatial interaction models using European Framework Programme data. Pap Reg Sci 92(3):555–577 Scherngell T, Lata R (2013) Towards an integrated European Research Area? Findings from eigenvector spatially filtered spatial interaction models using European Framework Programme data. Pap Reg Sci 92(3):555–577
Zurück zum Zitat Seya H, Tsutsumi M, Yamagata Y (2014a) Weighted-average least squares applied to spatial econometric models: a Monte Carlo investigation. Geogr Anal 46(2):126–147CrossRef Seya H, Tsutsumi M, Yamagata Y (2014a) Weighted-average least squares applied to spatial econometric models: a Monte Carlo investigation. Geogr Anal 46(2):126–147CrossRef
Zurück zum Zitat Seya H, Murakami D, Tsutsumi M, Yamagata Y (2014b) Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geogr Anal. doi:10.1111/gean.12054 Seya H, Murakami D, Tsutsumi M, Yamagata Y (2014b) Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geogr Anal. doi:10.​1111/​gean.​12054
Zurück zum Zitat Thayn JB, Simanis JM (2013) Accounting for spatial autocorrelation in linear regression models using spatial filtering with eigenvectors. Ann Assoc Am Geogr 103(1):47–66CrossRef Thayn JB, Simanis JM (2013) Accounting for spatial autocorrelation in linear regression models using spatial filtering with eigenvectors. Ann Assoc Am Geogr 103(1):47–66CrossRef
Zurück zum Zitat Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(5):1193–1221CrossRef Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(5):1193–1221CrossRef
Zurück zum Zitat Wang Y, Kockelman KM, Wang X (2013) Understanding spatial filtering for analysis of land use-transport data. J Transp Geogr 31:123–131CrossRef Wang Y, Kockelman KM, Wang X (2013) Understanding spatial filtering for analysis of land use-transport data. J Transp Geogr 31:123–131CrossRef
Metadaten
Titel
Random effects specifications in eigenvector spatial filtering: a simulation study
verfasst von
Daisuke Murakami
Daniel A. Griffith
Publikationsdatum
01.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Geographical Systems / Ausgabe 4/2015
Print ISSN: 1435-5930
Elektronische ISSN: 1435-5949
DOI
https://doi.org/10.1007/s10109-015-0213-7

Premium Partner