Skip to main content
Erschienen in: Population Ecology 2/2006

01.04.2006 | Original Article

Community structure and stability analysis for intraguild interactions among host, parasitoid, and predator

verfasst von: T Nakazawa, N Yamamura

Erschienen in: Population Ecology | Ausgabe 2/2006

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intraguild predation (IGP) occurs when one species preys on a competitor species that shares a common resource. Modifying a prey–predator model with prey infection, we propose a model of IG interactions among host, parasitoid, and predator, in which the predator eats parasitized and unparasitized hosts, and the adult parasitoid density is explicitly expressed. Parameter dependences of community structure, including stability of the system, were analytically obtained. Depending on interaction strength (parasitization and predation on unparasitized and parasitized hosts), the model provides six types of community structure: (1) only the host exists, (2) the host and predator coexist stably, (3) the host and parasitoid coexist stably, (4) the host–parasitoid population dynamics are unstable, (5) the three species coexist stably, and (6) the population dynamics of the three species are unstable. In contrast to a traditional prey–predator model with prey infection, which predicts that population dynamics are always locally stable, our model predicts that they are unstable when the parasitization rate is high.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford
Zurück zum Zitat Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564. DOI 10.1111/j.1461-0248.2004.00613.xCrossRef Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564. DOI 10.1111/j.1461-0248.2004.00613.xCrossRef
Zurück zum Zitat Bradley R (1983) Complex food webs and manipulative experiments in ecology. Oikos 41:150–152 Bradley R (1983) Complex food webs and manipulative experiments in ecology. Oikos 41:150–152
Zurück zum Zitat Briggs CJ (1993) Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am Nat 141:372–397CrossRef Briggs CJ (1993) Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am Nat 141:372–397CrossRef
Zurück zum Zitat Briggs CJ, Murdoch WW, Nisbet RM (1993) Coexistence of competing parasitoid species on a host with a variable life cycle. Theor Popul Biol 44:341–373. DOI 10.1006/tpbi.1993.1032CrossRef Briggs CJ, Murdoch WW, Nisbet RM (1993) Coexistence of competing parasitoid species on a host with a variable life cycle. Theor Popul Biol 44:341–373. DOI 10.1006/tpbi.1993.1032CrossRef
Zurück zum Zitat Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Entomol Exp Appl 97:93–108. DOI 10.1046/j.1570-7458.2000.00720.xCrossRef Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Entomol Exp Appl 97:93–108. DOI 10.1046/j.1570-7458.2000.00720.xCrossRef
Zurück zum Zitat Chattopadhyay J, Arino O (1999) A predator-prey model with disease in the prey. Nonlinear Anal 36:747–766. DOI 10.1016/S0362-546X(98)00126-6.CrossRef Chattopadhyay J, Arino O (1999) A predator-prey model with disease in the prey. Nonlinear Anal 36:747–766. DOI 10.1016/S0362-546X(98)00126-6.CrossRef
Zurück zum Zitat Chattopadhyay J, Pal S (2002) Viral infection on phytoplankton–zooplankton system: a mathematical model. Ecol Model 151:15–28. DOI 10.1016/S0304-3800(01)00415-XCrossRef Chattopadhyay J, Pal S (2002) Viral infection on phytoplankton–zooplankton system: a mathematical model. Ecol Model 151:15–28. DOI 10.1016/S0304-3800(01)00415-XCrossRef
Zurück zum Zitat Chattopadhyay J, Sarkar RR, Ghosal G (2002) Removal of infected prey prevents limit cycle oscillations in an infected prey–predator system: a mathematical study. Ecol Model 156:113–121. DOI 10.1016/S0304-3800(02)00133-3CrossRef Chattopadhyay J, Sarkar RR, Ghosal G (2002) Removal of infected prey prevents limit cycle oscillations in an infected prey–predator system: a mathematical study. Ecol Model 156:113–121. DOI 10.1016/S0304-3800(02)00133-3CrossRef
Zurück zum Zitat Chattopadhyay J, Pal S, Abdllaoui AE (2003) Classical predator–prey system with infection of prey population: a mathematical model. Math Meth Appl Sci 26:1211–1222. DOI 10.1002/mma.414CrossRef Chattopadhyay J, Pal S, Abdllaoui AE (2003) Classical predator–prey system with infection of prey population: a mathematical model. Math Meth Appl Sci 26:1211–1222. DOI 10.1002/mma.414CrossRef
Zurück zum Zitat Diehl S (1995) Direct and indirect effects of omnivory in a littoral lake community. Ecology 76:1727–1740 Diehl S (1995) Direct and indirect effects of omnivory in a littoral lake community. Ecology 76:1727–1740
Zurück zum Zitat Diehl S (2003) The evolution and maintenance of omnivory: dynamic constraints and the role of food quality. Ecology 84:2557–2567 Diehl S (2003) The evolution and maintenance of omnivory: dynamic constraints and the role of food quality. Ecology 84:2557–2567
Zurück zum Zitat González JM, Suttle CA (1993) Grazing by marine nanoflagellates on virus and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10 González JM, Suttle CA (1993) Grazing by marine nanoflagellates on virus and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10
Zurück zum Zitat Haigh J, Maynard Smith J (1972) Can there be more predator than prey? Theor Popul Biol 3:290–299. DOI 10.1016/0040-5809(72)90005-6CrossRefPubMed Haigh J, Maynard Smith J (1972) Can there be more predator than prey? Theor Popul Biol 3:290–299. DOI 10.1016/0040-5809(72)90005-6CrossRefPubMed
Zurück zum Zitat Hall SR, Duffy MA, Cáceres CE (2005) Selective predation and productivity jointly drive complex behavior in host–parasite systems. Am Nat 165:70–81CrossRefPubMed Hall SR, Duffy MA, Cáceres CE (2005) Selective predation and productivity jointly drive complex behavior in host–parasite systems. Am Nat 165:70–81CrossRefPubMed
Zurück zum Zitat Han L, Ma Z (2001) Four predator prey models with infectious diseases. Math Comput Model 34:849–858. DOI10.1016/S0895-7177(01)00104-2CrossRef Han L, Ma Z (2001) Four predator prey models with infectious diseases. Math Comput Model 34:849–858. DOI10.1016/S0895-7177(01)00104-2CrossRef
Zurück zum Zitat Hethcote HW, Wang W, Han L, Ma Z (2004) A predator–prey model with infected prey. Theor Popul Biol 66:259–268. DOI10.1016/j.tpb.2004.06.010CrossRefPubMed Hethcote HW, Wang W, Han L, Ma Z (2004) A predator–prey model with infected prey. Theor Popul Biol 66:259–268. DOI10.1016/j.tpb.2004.06.010CrossRefPubMed
Zurück zum Zitat Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:755–764 Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:755–764
Zurück zum Zitat Kaneko S (2002) Aphid-attending ants increase the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids by repelling intraguild predation. Entomol Sci 5:131–146 Kaneko S (2002) Aphid-attending ants increase the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids by repelling intraguild predation. Entomol Sci 5:131–146
Zurück zum Zitat Kaneko S (2003a) Different impacts of two species of aphid-attending ants with different aggressiveness on the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids. Ecol Res 18:199–212. DOI 10.1046/j.1440-1703.2003.00547.xCrossRef Kaneko S (2003a) Different impacts of two species of aphid-attending ants with different aggressiveness on the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids. Ecol Res 18:199–212. DOI 10.1046/j.1440-1703.2003.00547.xCrossRef
Zurück zum Zitat Kaneko S (2003b) Impacts of two ants, Lasius niger and Pristomyrmex pungens (Hymenoptera: Formicidae), attending the brown citrus aphid, Toxoptera citricidus (Homoptera: Aphididae), on the parasitism of the aphid by the primary parasitoid, Lysiphlebus japonicus (Hymenoptera: Aphidiidae), and its larval survival. Appl Entomol Zool 38:347–357. DOI 10.1303/aez.2003.347CrossRef Kaneko S (2003b) Impacts of two ants, Lasius niger and Pristomyrmex pungens (Hymenoptera: Formicidae), attending the brown citrus aphid, Toxoptera citricidus (Homoptera: Aphididae), on the parasitism of the aphid by the primary parasitoid, Lysiphlebus japonicus (Hymenoptera: Aphidiidae), and its larval survival. Appl Entomol Zool 38:347–357. DOI 10.1303/aez.2003.347CrossRef
Zurück zum Zitat Lenbury Y, Rattanamongkonkul S, Tumrasvin N, Amornsamankul S (1999) Predator–prey interaction coupled by parasitic infection: limit cycles and chaotic behavior. Math Comput Model 30:131–146. DOI 10.1016/S0895-7177(99)00186-7CrossRef Lenbury Y, Rattanamongkonkul S, Tumrasvin N, Amornsamankul S (1999) Predator–prey interaction coupled by parasitic infection: limit cycles and chaotic behavior. Math Comput Model 30:131–146. DOI 10.1016/S0895-7177(99)00186-7CrossRef
Zurück zum Zitat MacNair JN (1987) A reconciliation of simple and complex models of age-dependent predation. Theor Popul Biol 32:383–392CrossRef MacNair JN (1987) A reconciliation of simple and complex models of age-dependent predation. Theor Popul Biol 32:383–392CrossRef
Zurück zum Zitat Manage PM, Kawabata Z, Nakano S, Nishibe Y (2002) Effect of heterotrophic nanoflagellates on the loss of virus-like particles in pond water. Ecol Res 17:473–479. DOI 10.1046/j.1440-1703.2002.00504.xCrossRef Manage PM, Kawabata Z, Nakano S, Nishibe Y (2002) Effect of heterotrophic nanoflagellates on the loss of virus-like particles in pond water. Ecol Res 17:473–479. DOI 10.1046/j.1440-1703.2002.00504.xCrossRef
Zurück zum Zitat May RM, Hassell MP (1981) The dynamics of multiparasitoid–host interactions. Am Nat 117:234–261CrossRef May RM, Hassell MP (1981) The dynamics of multiparasitoid–host interactions. Am Nat 117:234–261CrossRef
Zurück zum Zitat McCann K, Hastings A (1997) Re-evaluating the omnivory stability relationship in food webs. Proc R Soc Biol Sci 264:1249–1254. DOI 10.1098/rspb.1997.0172CrossRef McCann K, Hastings A (1997) Re-evaluating the omnivory stability relationship in food webs. Proc R Soc Biol Sci 264:1249–1254. DOI 10.1098/rspb.1997.0172CrossRef
Zurück zum Zitat Meyhöfer R, Hindayana D (2000) Effects of intraguild predation on aphid parasitoid survival. Entomol Exp Appl 97:115–122. DOI 10.1046/j.1570-7458.2000.00722.xCrossRef Meyhöfer R, Hindayana D (2000) Effects of intraguild predation on aphid parasitoid survival. Entomol Exp Appl 97:115–122. DOI 10.1046/j.1570-7458.2000.00722.xCrossRef
Zurück zum Zitat Middelboe M (2000) Bacterial growth rate and marine virus–host dynamics. Microb Ecol 40:114–124. DOI 10.1007/s002480000050PubMed Middelboe M (2000) Bacterial growth rate and marine virus–host dynamics. Microb Ecol 40:114–124. DOI 10.1007/s002480000050PubMed
Zurück zum Zitat Mukherjee D (1998) Uniform persistence in a generalized prey–predator system with parasitic infection. BioSystems 47:149–155. DOI10.1016/S0303-2647(98)00022-7CrossRefPubMed Mukherjee D (1998) Uniform persistence in a generalized prey–predator system with parasitic infection. BioSystems 47:149–155. DOI10.1016/S0303-2647(98)00022-7CrossRefPubMed
Zurück zum Zitat Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer–resource dynamics. Princeton University Press, Princeton Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer–resource dynamics. Princeton University Press, Princeton
Zurück zum Zitat Mylius SD, Klumpers K, de Roos AM, Persson L (2001) Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am Nat 158:259–276CrossRef Mylius SD, Klumpers K, de Roos AM, Persson L (2001) Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am Nat 158:259–276CrossRef
Zurück zum Zitat Nisbet RM (1997) Delay-differential equations for structured populations. In: Tuljapurkar S, Caswell H (eds) Structured population models in marine, terrestrial and freshwater ecosystems. Chapman and Hall, New York, pp 89–118 Nisbet RM (1997) Delay-differential equations for structured populations. In: Tuljapurkar S, Caswell H (eds) Structured population models in marine, terrestrial and freshwater ecosystems. Chapman and Hall, New York, pp 89–118
Zurück zum Zitat Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154. DOI 10.1016/0169-5347(92)90208-SCrossRef Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154. DOI 10.1016/0169-5347(92)90208-SCrossRef
Zurück zum Zitat Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330CrossRef Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330CrossRef
Zurück zum Zitat Schmidt MH, Lauer A, Purtauf T, Thies C, Schaefer M, Tscharntke T (2003) Relative importance of predators and parasitoids for cereal aphid control. Proc R Soc Biol Sci 270:1905–1909. DOI 10.1098/rspb.2003.2469CrossRef Schmidt MH, Lauer A, Purtauf T, Thies C, Schaefer M, Tscharntke T (2003) Relative importance of predators and parasitoids for cereal aphid control. Proc R Soc Biol Sci 270:1905–1909. DOI 10.1098/rspb.2003.2469CrossRef
Zurück zum Zitat Singh BK, Chattopadhyay J, Sinha S (2004) The role of virus infection in a simple phytoplankton–zooplankton system. J Theor Biol 231:153–166. DOI 10.1016/j.jtbi.2004.06.010CrossRefPubMed Singh BK, Chattopadhyay J, Sinha S (2004) The role of virus infection in a simple phytoplankton–zooplankton system. J Theor Biol 231:153–166. DOI 10.1016/j.jtbi.2004.06.010CrossRefPubMed
Zurück zum Zitat Suttle CA, Chen F (1992) Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol 58:3721–3729PubMed Suttle CA, Chen F (1992) Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol 58:3721–3729PubMed
Zurück zum Zitat Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82:440–452 Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82:440–452
Zurück zum Zitat Xiao Y, Chen L (2001) Modeling and analysis of a predator–prey model with disease in the prey. Math Biosci 171:59–82. DOI 10.1016/S0025-5564(01)00049-9CrossRefPubMed Xiao Y, Chen L (2001) Modeling and analysis of a predator–prey model with disease in the prey. Math Biosci 171:59–82. DOI 10.1016/S0025-5564(01)00049-9CrossRefPubMed
Metadaten
Titel
Community structure and stability analysis for intraguild interactions among host, parasitoid, and predator
verfasst von
T Nakazawa
N Yamamura
Publikationsdatum
01.04.2006
Erschienen in
Population Ecology / Ausgabe 2/2006
Print ISSN: 1438-3896
Elektronische ISSN: 1438-390X
DOI
https://doi.org/10.1007/s10144-005-0249-5

Weitere Artikel der Ausgabe 2/2006

Population Ecology 2/2006 Zur Ausgabe